при наличии ограничивающих условий:
,
,
где — математическое ожидание результатов наблюдений. Решение поставленной задачи находится методом множителей Лагранжа.
Искомая плотность распределения результатов наблюдений описывается выражением
(23)
Такое распределение результатов наблюдений называется
Значения дифференциальной функции распределения равномерной распределенной случайной погрешности постоянны в интервале [–

Поэтому выражение для дифференциальной функции распределения случайной погрешности можно записать в виде
(24)
Определим числовые характеристики равномерного распределения. Математическое ожидание случайной погрешности находим по формуле (10):
Дисперсию случайной равномерно распределенной погрешности можно найти по формуле (18):
В силу симметрии распределения относительно математического ожидания коэффициент асимметрии должен равняться нулю:
Для определения эксцесса найдем вначале четвертый момент случайной погрешности:
поэтому
В заключение найдем вероятность попадания случайной погрешности в заданный интервал [δ1, δ2], равный заштрихованной площади на рис. 7.

2. В классе распределений результатов наблюдений при наличии ограничений:
,
,
.
Решение этой задачи также находится методом множителей Лагранжа. Искомая плотность распределения результатов наблюдений описывается выражением
(25)
где
Учитывая, что при полном исключении систематических погрешностей
(25)
Распределение, описываемое уравнениями (25) и (26), называется
На рис.8 изображены кривые нормального распределения случайных погрешностей для различных значений среднеквадратического отклонения (σ1 > σ2 > σ3).

Из рисунка видно, что по мере увеличения среднеквадратического отклонения распределение все более и более расплывается, вероятность появления больших значений погрешностей возрастает, а вероятность меньших погрешностей сокращается, т.е. увеличивается рассеивание результатов наблюдений.
Вычислим вероятность попадания результата наблюдения в некоторый заданный интервал (x1, x2]:
Заменим переменные:
после чего получим следующее выражение для искомой вероятности:
Интегралы, стоящие в квадратных скобках, не выражаются в элементарных функциях, поэтому их вычисляют с помощью так называемого нормированного нормального распределения с дифференциальной функцией
(27)
В приложении (табл. П. 5 и П. 6) приведены значения дифференциальной функции нормированного нормального распределения, а также интегральной функции этого распределения, определяемой как
(28)
С помощью функции Ф(
(29)
При использовании данной формулы следует иметь в виду тождество
Φ(z) ≡ 1-Φ(–z)
вытекающее непосредственно из определения функции Ф(
Широкое распространение нормального распределения погрешностей в практике измерений объясняется центральной предельной теоремой теории вероятностей, являющейся одной из самых замечательных математических теорем, в разработке которой принимали участие многие крупнейшие математики — Муавр, Лаплас, Гаусс, Чебышев и Ляпунов.
3. Предположим, что результаты наблюдений распределены нормально, но их среднеквадратическое отклонение является величиной случайной, изменяющейся от опыта к опыту. Такое предположение более осторожное, чем предположение о неизменности σ
(30)
где