• 0 ≤
•
•
• P(
На рис.2 показаны примеры функций распределения вероятности.

Более наглядным является описание свойств результатов наблюдений и случайных погрешностей с помощью дифференциальной функции распределения, иначе называемой
Физический смысл
Свойства плотности распределения вероятности:
— вероятность достоверного события равна 1;
иными словами, площадь, заключенная между кривой дифференциальной функции распределения и осью абсцисс, равна единице;
— вероятность попадания случайной величины в интервал от
От дифференциальной функции распределения легко перейти к интегральной путем интегрирования:
(7)
Размерность плотности распределения вероятностей, как это следует из формулы (7), обратна размерности измеряемой величины, поскольку сама вероятность — величина безразмерная.
Используя понятия функций распределения, легко получить выражения для вероятностей того, что результат наблюдений
В терминах интегральной функции распределения имеем:
т.е. вероятность попадания результата наблюдений или случайной погрешности в заданный интервал равна разности значений функции распределения на границах этого интервала.
Заменяя в полученных формулах интегральные функции распределения на соответствующие плотности распределения вероятностей согласно выражению (7), получим формулы для искомой вероятности в терминах дифференциальной функции распределения:
(8)
(9)
Таким образом, вероятность попадания результата наблюдения или случайной погрешности в заданный полуоткрытый интервал равна площади, ограниченной кривой распределения, осью абсцисс и перпендикулярами к ней на границах этого интервала. Необходимо отметить, что результаты наблюдений в значительной степени сконцентрированы вокруг истинного значения измеряемой величины и по мере приближения к нему элементы вероятности их появления возрастают. Это дает основание принять за оценку истинного значения измеряемой величины координату центра тяжести фигуры, образованной осью абсцисс и кривой распределения, и называемую
(10)
В заключение можно дать более строгое определение постоянной систематической и случайной погрешностей.
θ =
а
δ =
В этих обозначениях истинное значение измеряемой величины составляет
4.3. Моменты случайных погрешностей
Функция распределения является самым универсальным способом описания поведения случайных погрешностей. Однако для определения функций распределения необходимо проведение весьма кропотливых научных исследований и обширных вычислительных работ. Поэтому к такому способу описания случайных погрешностей прибегают иногда при исследовании принципиально новых мер и измерительных приборов.
Значительно чаще бывает достаточно охарактеризовать случайные погрешности с помощью ограниченного числа специальных величин, называемых
Начальным моментом
(14)
представляющий собой математическое ожидание степени
При
(15)
т.е. первый начальный момент совпадает с математическим ожиданием результатов измерений.
Центральным моментом