В предыдущем разделе для того, чтобы выразить степень различия портфелей с точки зрения их внутренней структуры, мы использовали коэффициент вариации весов отдельных элементов портфеля. Поскольку вес портфеля всегда положителен, c применением коэффициента вариации не возникает проблем. Однако в этом разделе мы будем сравнивать различные методы распределения капитала на основе реализовавшейся прибыли портфеля, которая может быть отрицательной (убыток). Поскольку в данном случае коэффициент вариации – вычисляемый как отношение стандартного отклонения (всегда положительно) к среднему (положительно или отрицательно) – может оказаться отрицательной величиной, его применение для оценки изменчивости (степени различия портфелей) невозможно. Поэтому нам придется выражать изменчивость с помощью стандартного отклонения, не нормированного на величину среднего.
Чем чреват такой отказ от нормировки? Из практики известно, что во многих случаях стандартное отклонение имеет положительную корреляцию со средним. В таких случаях тренды, наблюдаемые в динамике изменчивости (или другие зависимости), могут по существу быть трендами среднего, а не изменчивости. Нормировка же позволяет устранить этот недостаток. Поэтому, прежде чем приступить к нашим исследованиям (в которых мы вынуждены отказаться от нормировки), необходимо установить, существует ли в нашем случае взаимозависимость между средним и стандартным отклонением. Использование ненормированного стандартного отклонения будет допустимо только в том случае, если такой зависимости не существует.
Для того чтобы установить, существует ли прямая зависимость между средним и стандартным отклонением, мы рассчитали их значения на каждую дату создания портфелей. Среднее и стандартное отклонение вычислялись по величине прибыли семи портфелей, сформированных по семи разным показателям. На основе полученных данных мы провели регрессионный анализ, результаты которого представлены на рис. 4.4.1. Как следует из рисунка, прямая зависимость между средним и стандартным отклонением в данном случае не наблюдается. Более того, существует слабо выраженная обратная зависимость. Несмотря на то что обратная зависимость статистически значима (t = 18,4, p < 0,001), ее влиянием можно пренебречь в силу того, что коэффициент детерминации имеет очень низкое значение (R2 = 0,05). Таким образом, в нашем исследовании допустимо использовать в качестве меры изменчивости стандартное отклонение, не нормированное на величину среднего.
На протяжении всего периода исследования уровень изменчивости прибыли варьировал в довольно широком диапазоне (рис. 4.4.2). В определенные периоды изменчивость была очень высокой. Это означает, что в такие периоды способ распределения капитала имел большое влияние на прибыль портфеля. В то же время в другие периоды наблюдалась низкая изменчивость, что свидетельствует о том, что выбор определенного показателя для распределения капитала внутри портфеля не оказывал заметного влияния на доходность портфеля.
Таким образом, мы установили, что при определенных обстоятельствах выбор способа распределения капитала может оказывать заметное влияние на результаты работы торговой системы, а при других условиях может быть совершенно не важным. Поэтому необходимо установить, от чего зависит степень влияния, оказываемого выбором способа распределения капитала. Иначе говоря, какие факторы делают решение о выборе того или иного показателя, используемого для формирования портфеля, значимым и важным. Для того чтобы ответить на этот вопрос, мы исследуем влияние трех факторов (исторической волатильности, времени создания портфеля и количества разных базовых активов в составе портфеля) на изменчивость прибыли портфелей, отличающихся друг от друга способом распределения капитала.
Историческая волатильность
Для того чтобы установить, влияет ли уровень волатильности рынка на изменчивость прибыли портфелей, сформированных по разным показателям, мы рассчитали величину исторической волатильности индекса S&P 500 для каждой даты создания портфеля (расчет делался на 120-дневном историческом горизонте). Все данные по изменчивости прибыли были сгруппированы и усреднены по уровням исторической волатильности индекса S&P 500. При группировке в качестве дискрета (шага) использовался 1 % волатильности. Например, в одну группу вошли и были усреднены все стандартные отклонения, соответствующие тем датам создания портфеля, когда историческая волатильность находилась в диапазоне от 22 до 23 %. Соответственно, стандартные отклонения, относящиеся к тем датам, когда историческая волатильность находилась в диапазоне от 23 до 24 % вошли в следующую группу. И так далее.
Результаты анализа представлены на рис. 4.4.3. Существует прямая зависимость между уровнем волатильности и изменчивостью прибыли портфелей, формируемых на основе различных показателей. Если в период, предшествующий созданию портфеля, рынок был относительно спокоен (низкая историческая волатильность в момент создания портфеля), то выбор способа распределения капитала не оказывал существенного влияния на прибыльность стратегии (низкое значение стандартного отклонения). Если же на момент формирования портфеля волатильность была высокой, то изменчивость прибыли, реализованной на дату экспирации, оказывалась достаточно большой. Это означает, что при формировании портфеля в периоды экстремального рынка выбор способа распределения капитала оказывает решающее влияние на результативность торговли.
Интересно также отметить, что паттерн распределения данных на плоскости регрессии указывает на наличие условной гетероскедастичности (conditional heteroskedasticity) в этом анализе. Это следует из того, что разброс точек на низких уровнях независимой переменной (историческая волатильность) намного меньше, чем разброс точек на ее высоких уровнях. Из этого следует, что изменчивость прибыли портфелей в периоды волатильного рынка может быть не только большой (как мы отметили выше), но и достаточно умеренной (как вытекает из свойств условной гетероскедастичности).
Количество дней до экспирации
На протяжении всего исследуемого периода портфели создавались каждый торговый день на ближайшую дату экспирации и на две последующие даты. Это означает, что все сгенерированные портфели можно разбить на группы, отличающиеся друг от друга по количеству дней от момента формирования портфеля до даты истечения опционов. Если рассмотреть все стандартные отклонения в пределах каждой такой группы, то это позволит проследить зависимость изменчивости прибыли портфелей от числа дней, остающихся до экспирации.
Из рис. 4.4.4 следует, что изменчивость прибыли портфелей, сформированных по разным показателям тем больше, чем больше дней остается до экспирации в момент создания портфеля. Это означает, что, если портфель создается незадолго до экспирации, разница в прибыли между портфелями, сформированными на основе разных показателей, не существенна. С другой стороны, если для формирования портфеля используются далекие опционы, то способ распределения капитала влияет существенно на будущую прибыль.
Практический вывод, следующий из этого наблюдения, достаточно важен, если разработчик стратегии ориентируется на торговлю только ближайшими опционными контрактами. Такой тип стратегий достаточно широко распространен среди трейдеров в силу того, что ближайшие контракты наиболее ликвидны и имеют наибольшую скорость временного распада (тету). При разработке автоматизированных систем, ориентированных на торговлю ближайшими опционными контрактами, выбор определенной системы распределения капитала не оказывает большого влияния на показатели доходности. Поэтому можно не тратить время и вычислительные ресурсы на поиск оптимальной системы распределения капитала.
Количество базовых активов
В соответствии с алгоритмом базовой маркет-нейтральной стратегии (модификация которой используется в настоящем исследовании) все портфели формируются таким образом, что количество попадающих в портфель комбинаций (и, соответственно, количество базовых активов) не предопределено и может сильно меняться