Изоморфизм и декомпозиция моделей.

* Изоморфизмом системы S на системы Sа, Se и др. будет взаимнооднозначное отображение множества-носителя системы S на множества-носители систем Sа, Se и др., сохраняющее главные операции и предикаты модели (3.3.1).

Изоморфизм рассмотрим на графовых моделях систем, процессов, структур. Два графа G1 = G1(V1, H1) и G2= G2(V2, H2) считаются изоморфными, если существует взаимооднозначное отображение такое, что V1 взаимнооднозначно отображается на V2 и H1 взаимнооднозначно отображается на H2, т.е. каждой вершине из V1 соответствует одна и только одна вершина из V2 и наоборот, а каждому ребру из H1 соответствует одно и только одно ребро из H2 и наоборот, каждому ребру из Н2 соответствует одно и только одно ребро из Н1.

Графы процессов и структур определим следующим образом:

G (P) = G (B,D), G(Pa)=G(B0, ?d), G(Pe)= G(?в, D0),

G( C) = G (A, E), G(Ca) = G (A0, ?e), G (Ce)=G(?a, E0).

* Сформулируем следующий результат.

Теорема 3.9. Графы G(Р), G(С), G(Pa), G(Pe), G(Ca), G(Ce) изоморфны.

Доказательство его следует из очевидного здесь факта: изоморфны между собой множества в каждой тройке множеств: В, В0, ?в; A, A0, ?a; D, D0, ?d; E, E0, ?e.

* Графы систем определим следующим образом, как прямые суммы:

G (S) = G (P) ? G ( C );

G (Sa) = G(Pa) ? G (Ca);

G(Se) = G(Pe) ? G(Ce).

Теорема 3.10. Графы G(S), G(Sa), G(Se) изоморфны.

Эти графы изоморфны, так как в соответствии с предыдущим результатом изоморфны их части, не пересекающиеся по вершинам и ребрам.

* Графы процесса и структуры также могут быть представлены в виде прямых сумм частей, не пересекающихся по вершинам и ребрам:

G (P) = G(Pa) ? G (Pe); G(C ) = G (Ca) ? G(Ce).

В силу этого можно сформулировать

Теорема 3.11. Графы G (S), G(Sa), G(Se), G(P), G(C) изоморфны.

Взаимосвязи между частями графов G (S), G(Sa), G(Se), G(Р), G (С) определяются выбранными ранее отношениями ?, ?-1, ?, ?-1, ?, ?0 и др. (рис. 3.1а,б,в).

* Полученные результаты позволяют сформировать следующую процедуру декомпозиции при исследовании систем. Вполне очевидно, что переход от графа G (S) к графу G(Sa) или G(Se) означает переход от более сложных задач к более простым. В то же время модель любого системного объекта, в том числе Sa и Se, можно представить в виде модели полной системы и вновь разложить его на модели G(Sa), G(Se) и др. Новая декомпозиция будет означать дальнейшее упрощение задач исследования системы. В то же время при повторной декомпозиции модели, как и при первой., вновь будут определены отношения взаимосвязи между частями модели. Сохраняя отношения взаимосвязи на каждом этапе, можно перейти к системе с более простыми задачами исследования – к «простой» системе, задачи которой разрешимы для исследователя. Затем можно, используя отношения взаимосвязи, перейти к решению задач исходной системы, как к некоторой композиции задач «простых» систем. Возможно, что «простая» система – это система, в которой нецелесообразно выделение дополнительной системы.

При такой декомпозиции не нарушается структура и процесс исследуемой системы, производится как бы расслоение системы. Образно можно определить, что это расслоение модели системы, декомпозиция «по толщине», возможная для математических моделей любых систем, когда каждая вершина и ребро графовой модели могут «расслаиваться» на две части в соответствии с определениями (3.3.5) – (3.3.7).

Описанный способ декомпозиции вполне применим и в сочетании с известными методами.

Комплексы систем

* Предложенная математическая модель общей системы дает возможность описать систему S, имеющую столько вариантов построения, сколько разных изделий или продуктов SF (каждое из которых соответствует одной системе целей F) она должна изготавливать или выпускать. Известно в то же время, что системы, как правило, объединяются в комплексы. Определение комплекса можно сформулировать с помощью полученных

Добавить отзыв
ВСЕ ОТЗЫВЫ О КНИГЕ В ИЗБРАННОЕ

0

Вы можете отметить интересные вам фрагменты текста, которые будут доступны по уникальной ссылке в адресной строке браузера.

Отметить Добавить цитату