формулу, которую после того, как применил ее один раз, было легко повторять. Предлагаемый здесь пример вычисления может проиллюстрировать то, что было сказано только что.
Мне трудно представить себе, чтобы даже самый опытный математик смог бы догадаться, что означают эти цифры, и, лишь сравнивая похожие вычисления, мы можем понять все эти сокращения. Предположение, сформулированное в строке а, соответствует уравнению х
а) 6/5 х = 21
б) 6 х = 21 х 5
в) х = 21/6 х 5
г)
д) х = 171/2
Проверка: 171/2 + 31/2= 21
О геометрии египтяне знали еще меньше, чем об арифметике, хотя им было крайне необходимо умение измерять площадь участка поверхности из-за того, что каждый год разлив уничтожал очень много границ между полями. Все их расчеты имели в основе прямоугольник, площадь которого они верно определяли как произведение длин двух его сторон. Но, как ни странно, они совершенно не замечали, что нельзя обращаться одинаково со всеми четырехсторонними фигурами, у которых противоположные стороны имеют одинаковую длину. И поскольку египтяне рассматривали каждый четырехугольник как четырехугольник, у которого две стороны совпадают одна с другой, а две остальные вдвое короче этих, они переносили эту ошибку и в вычислительные операции над треугольниками. Кроме того, для них равнобедренный треугольник был равен половине произведения длин его длинной и короткой сторон, потому что они во всех случаях определяли площадь соответствующего ему четырехугольника как произведение длин двух его сторон, словно это был просто прямой угол. Ошибка, возникавшая из-за заблуждений такого рода, в определенных обстоятельствах могла быть велика.
Вычисление площади трапеции тоже страдало от этой ошибки: чтобы определить ее площадь, они умножали длину наклонной стороны на половину произведения длин двух параллельных сторон. Как мы видим, основной принципиальной ошибкой данных египетских учеников в деле измерения площадей было то, что они так никогда и не поняли значение перпендикуляра. Вместо него они пользовались одной из наклонных сторон и этим с самого начала лишили себя возможности работать правильно. Стоит отметить, что при таких ошибках они все же нашли правильный способ приблизительного вычисления площади круга; в этом случае они вычитали из диаметра его девятую часть, а остаток умножали сам на себя. То есть, если диаметр круга был равен 9 родам (здесь род – длина измерительного жезла, английская единица измерения. – Пер.), площадь круга, по их расчетам, была 8 х 8 = 64 квадратных рода, и этот результат отличался от верного всего лишь примерно на 2/3 квадратных рода.
Среди задач на измерение объема, которые пытались решить египтяне, было, например, определение того, сколько зерна входит в амбар определенного размера. Судя по тому немногому, что мы в настоящее время можем более или менее ясно понять в этих задачах, основные концепции египтян в этом случае были верны, но условия задач слишком сложны, чтобы мы могли составить о них какое-то определенное мнение. Но если бы мы и понимали их, они, вероятно, мало изменили бы наше общее впечатление от математики древних египтян, и наше заключение по ее поводу таково: об их теоретическом знании этой науки сказать почти нечего, но их практические познания в ней очень хорошо удовлетворяли простые потребности повседневной жизни.
Маленькая стела, которую писец по имени Аменхотеп посвятил Амону-Ра, вероятно в благодарность за излечение больного уха (W. 358, из Фив)
Глава VIII
ЛИТЕРАТУРА
Сказки всегда радовали сердца и современных, и древних египтян, и, когда ученый- первооткрыватель извлекал из тьмы сказочного фольклора феллахов настоящие сокровища, он сразу догадывался, что такие рассказы имеют очень древнее происхождение[334] . Действительно, от различных периодов египетской истории до нас дошло довольно много очень похожих по характеру рассказов; и это позволяет нам понять, какое огромное наслаждение египтяне находили в рассказывании историй. Эти легкие поэтические сочинения, несомненно, во все времена пользовались любовью у египетских крестьян, хотя, возможно, не всегда занимали столь же почетное место в египетской литературе. Мы ничего не знаем о состоянии этой литературы до эпохи Среднего царства, но несколько повестей этой эпохи дошли до нас, и их содержание свидетельствует об их народном происхождении. Интересный литературный отрывок, входящий в состав Берлинского папируса, тоже имеет, если можно так сказать, простонародный характер. В нем говорится о том, как молодой пастух на мгновение увидел среди болот
Волк пасет коз, а кот – гусей. Из сатирических рисунков Лондонского папируса (согласно реконструкции у Лепсиуса в Auswahl, pl. 23)
Египтяне эпохи Среднего царства, видимо, особенно любили повести о путешествиях, в которых герой рассказывает о своих собственных приключениях. Из полудюжины книг этого периода, которые у нас есть, по меньшей мере две содержат рассказы такого рода, а от более поздних времен у нас нет ни одной такой повести.
В первой из этих книг некий казначей, отправившийся на «рудники фараона» и переживший кораблекрушение, рассказывает о чудесах, с которыми ему довелось познакомиться на вымышленном острове змей. Другое сочинение меньше похоже на художественную повесть: в нем описана жизнь изгнанника среди бедуинов. Рассказ прост и составлен в народном стиле, в его содержании нет ничего особенного, так что известность, которой эта книга пользовалась в течение многих веков, должно быть, имела причиной обаяние ее наполовину поэтического стиля[337]. Синухет (так это имя написано в переводе на русский язык, отрывки из которого процитированы в книге