являются квадратами (например, 32, 52, 72 и т. д.). Следовательно, существует бесконечно много нечетных квадратов, которые можно прибавить к квадрату и получить другой квадрат. Иначе говоря, существует бесконечно много пифагоровых троек.
Приложение 6. Доказательство гипотезы о трех точках
Гипотеза о трех точках утверждает, что невозможно построить точную диаграмму так, чтобы на каждой прямой было по крайней мере три точки. Хотя это доказательство требует минимальных познаний в математике, оно опирается на некоторую геометрическую «гимнастику», и поэтому следует тщательно продумать каждый его шаг.
Начнем с произвольно расположенных точек. Проведем через каждую точку прямые, соединяющие ее со всеми остальными точками. Затем для каждой точки измерим расстояние, отделяющие ее от ближайшей прямой, и найдем ту из точек, которая ближе, чем все остальные, находится от некоторой прямой.
На рисунке внизу изображена такая точка
Чтобы показать, что на прямой
Аналогично, если бы третья точка
Следовательно, для каждой конфигурации всегда существует по крайней мере эта прямая, которой принадлежат только две точки диаграммы, и гипотеза верна.
Приложение 7. Пример неправильного доказательства
Приведем классический пример того, как легко, начав с очень простого утверждения и сделав всего лишь несколько, казалось бы, прямых и вполне логичных шагов, показать, 2=1.
Начнем с невинного утверждения о том, что
a = b.
Умножив обе части равенства на
a2 = ab.
Добавив к обеим частям равенства по
a2 + a2 – 2ab = ab + a2 – 2ab.
Это равенство можно упростить:
2(a2 — ab) = a2 — ab.
Наконец, сокращая это выражение на
Исходное утверждение казалось совершенно безвредным (и на самом деле оно не таит в себе ничего плохого), но, производя шаг за шагом преобразования равенства
Такого рода тонкая ошибка типична для просчетов, допущенных многими соискателями премии Вольфскеля.
Приложение 8. Аксиомы арифметики
Величественное здание арифметики опирается на следующие аксиомы.
1. Для любых чисел
2. Для любых чисел
3. Для любых чисел
4. Существует число 0, такое, что для любого числа
5. Существует число 1, такое, что для любого числа
6. Для любого числа
7. Для любых чисел
Исходя из этих аксиом, можно доказать другие правила арифметики. Например, используя только приведенные выше аксиомы и не прибегая ни к каким другим допущениям, мы можем строго доказать