В случае Г я привел другую известную головоломку, впервые появившуюся в книге «Маленькие приключения Жерома Шарпа», изданной в Брюсселе в 1789 г. Поместите 7 шашек на 7 из 8 кружков следующим образом. Вы должны всегда ставить шашку на свободный кружок, а затем оттуда передвигать ее вдоль прямой, ведущей из этого кружка, в следующее свободное место (в любом направлении), где и оставлять шашку. Продолжайте действовать таким образом, пока все шашки не будут размещены. Помните, что вы ставите шашку на свободный кружок, а затем передвигаете ее на другой кружок, который тоже должен оказаться свободным. Теперь с помощью метода «пуговиц и веревочек» мы можем преобразовать нашу диаграмму, как в случае Д, после чего решение становится очевидным. «Всегда ходите на кружок, с которого вы передвигали шашку на предыдущем ходу». Это, конечно, не единственный способ, но простейшее решение, которое приходит на ум.
Существует несколько головоломок в этой книге, при решении которых данный метод может оказаться полезным.
169. Наиболее трудное место, которое должен выяснить для себя читатель, приступая к данной головоломке, состоит в том, чтобы решить, являются ли заштрихованные шашки (те, что находятся на правильных местах) просто «пустышками», не имеющими существенного отношения к делу. Из ста человек девяносто девять придут к выводу, что совершенно бесполезно передвигать какую-то из этих шашек, но здесь-то они и окажутся не правы.
Наикратчайшее решение в случае, если не передвигать заштрихованные шашки, состоит из 32 ходов. Однако головоломку удается решить всего за 30 ходов. Трюк состоит в том, чтобы передвинуть 6 (или 15) на втором ходу и вернуть ее на место на девятнадцатом. Полное решение таково: 2, 6, 13, 4, 1, 21, 4, 1, 10, 2, 21, 10, 2, 5, 22, 16, 1, 13, 6, 19, 11, 2, 5, 22, 16, 5, 13, 4, 10, 21. Всего 30 ходов.
170. Существует 80 различных расположений, образующих правильный путь коня, но только 40 из них можно достичь без того, чтобы два человека одновременно оказывались в одной камере. Наибольшее число людей, не участвующих в перемещениях, равно 2, и хотя путь коня можно устроить таким образом, чтобы оставить в исходных положениях 7 и 13, 8 и 13, 5 и 7 или 5 и 13, следующие четыре расположения, где неподвижными остаются 7 и 13, — единственные, которых можно достичь при заданных условиях. Следовательно, нужно найти наименьшее число ходов, приводящее к одному из этих расположений. Это, разумеется, нелегко сделать, и нельзя предложить никаких четких правил, приводящих к нужному ответу. Во многом здесь дело сводится к личному мнению, терпеливому экспериментированию и острому глазу по отношению к расположению и поворотам!
Кстати сказать, расположения В можно добиться за 66 ходов, действуя следующим образом: 12, 11, 15, 12, 11, 8, 4, 3, 2, 6, 5, 1, 6, 5, 10, 15, 8, 4, 3, 2, 5, 10, 15, 8, 4, 3, 2, 5, 10, 15, 8, 4, 12, 11, 3, 2, 5, 10, 15, 6, 1, 8, 4, 9, 8, 1, 6, 4, 9, 12, 2, 5, 10, 15, 4, 9, 12, 2, 5, 3, 11, 14, 2, 5, 14, 11 = 66 ходов. Хотя это самое короткое решение, которое мне удалось найти, и я думаю, что более короткого не существует, я не могу это утверждать со всей определенностью. Наиболее привлекательным выглядит, конечно, расположение А, но вещи не таковы, какими кажутся, и достигнуть В оказывается легче всего.
Если бы можно было оставить свободной левую нижнюю камеру, то подошло бы следующее решение в 45 ходов, принадлежащее Р. Эрлику: 15, 11, 10, 9, 13, 14, 11, 10, 7, 8, 4, 3, 8, 6, 9, 7, 12, 4, 6, 9, 5, 13, 7, 5, 13, 1, 2, 13, 5, 7, 1, 2, 13, 8, 3, 6, 9, 12, 7, 11, 14, 1, 11, 14, 1. Но при этом передвигается каждый человек.
171. Сначала следует остановить свой выбор на наиболее обещающем пути коня, а затем попытаться достичь данного расположения за наименьшее число ходов. Я твердо держусь того мнения, что наилучшим будет расположение, представленное на рисунке, где, как можно заметить, каждое последующее число получается из предыдущего ходом коня, а пять собак (1, 5, 10, 15 и 20) никогда не покидают свои первоначальные конуры.
К этому расположению можно прийти за 46 ходов: 16—21, 16—22, 16—23, 17—16, 12—17, 12—22, 12—21, 7—12, 7—17, 7—22, 11—12, 11—17, 2—7, 2—12, 6—11, 8—7, 8—6, 13—8, 18—13, 11—18, 2—17, 18—12, 18—7, 18—2, 13—7, 3—8, 3—13, 4—3, 4—8, 9—4, 9—3, 14—9, 14—4, 19—14, 19—9, 3—14, 3—19, 6—12, 6—13, 6—14, 17—11, 12—16, 2—12, 7—17, 11—13, 16—18 = 46 ходов. Я, конечно, не могу категорически утверждать, что не существует решения с меньшим числом ходов, но думаю, что отыскать такое решение будет чрезвычайно трудно.
172. Назовем одну пешку А, а другую В. Далее, учитывая, что первый ход можно делать на одну или две клетки, мы получаем, что каждая пешка достигает восьмой клетки за 5 или б своих ходов. Следовательно, нужно рассмотреть четыре случая: (1) А и В делают по 6 ходов; (2) А делает 6, а В — 5 ходов; (3) А делает 5,