4.5. Многомерная система распределения капитала
4.5.1. Методика применения многомерной системы
Многомерная система распределения капитала внутри портфеля основывается на одновременном использовании нескольких показателей, выражающих оценки доходности и риска. Введение дополнительных показателей может способствовать созданию более сбалансированной системы распределения капитала с точки зрения оптимизации соотношения ожидаемой доходности и прогнозируемых рисков. При использовании многомерной системы появляется дополнительная проблема, не возникавшая при распределении капитала на основе единственного показателя, – необходимость выбора одного портфеля из множества вариантов, каждый из которых может считаться оптимальным. В разделе 4.2.1 мы перечислили основные подходы к решению этой задачи. Здесь мы продемонстрируем применение методики мультипликативной свертки нескольких показателей.
Рассмотрим пример распределения капитала по двум показателям – математическому ожиданию прибыли и VaR. Продемонстрируем расчет мультипликативной свертки этих показателей и вычисление значений весовой функции на основе данных, приведенных в таблице 4.3.2. Поскольку эти два показателя имеют различный масштаб величин, возникает необходимость в нормализации их значений. Существует несколько способов нормализации. Мы воспользуемся формулой, позволяющей привести значения любого показателя к интервалу от нуля до единицы:
В таблице 4.5.1 приведены оригинальные значения показателя EPLN (математическое ожидание прибыли, рассчитанное на основе логнормального распределения) и VaR (взятые из таблицы 4.3.2) и их нормализованные значения, рассчитанные с помощью формулы 4.5.1. Приведем пример расчета нормализованного значения показателя EPLN для акции AAPL. Максимальное и минимальное значения EPLN составляют 0,0191 и 0,0003 соответственно. Поскольку оригинальное значение EPLN для AAPL составляет 0,0099, то, используя формулу 4.5.1, можно рассчитать нормализованное значение, как:
(0,0099 – 0,0003) / (0,0191 – 0,0003) = 0,511.Поскольку показатель EPLN выражает ожидаемую прибыль, а VaR – убыток, то мультипликативная свертка рассчитывается как отношение EPLN к VaR. В этой связи возникает проблема с нулевыми значениями нормализованных показателей. Разрешить эту проблему можно путем замены нулевых значений значениями, рассчитанными по следующей формуле:
где φ(Сmin + 1) означает величину показателя со следующим после минимального значением. Например, по показателю EPLN нормализованная функция имеет нулевое значение для акции AA. Используя формулу 4.5.2 и учитывая, что акцией со следующим по величине показателем является V[φ(Сmin + 1) = 0,0007], можем вычислить значение нормализованного показателя для AA: (0,0003/0,0007) × 0,021 = 0,009.
После того как значения показателей нормализованы и значения свертки вычислены, остается рассчитать вес каждой комбинации в составе портфеля. Это делается с помощью формулы 4.3.5 (результаты расчетов представлены в последнем столбце таблицы 4.5.1).
4.5.2. Сравнение многомерной и одномерной системы
В этом разделе мы проанализируем, каким образом использование многомерной системы распределения капитала влияет на параметры формируемого портфеля. Для этого необходимо сравнить прибыли портфелей, сформированных с помощью одномерной системы, с прибылями портфелей, созданных на основе многомерной системы. Такое же сравнение следует провести в отношении меры концентрированности капитала.
Мы провели сравнительный анализ на периоде 2002–2010 гг., смоделировав две торговые стратегии, аналогичные той, что была описана в разделе 4.4.1, за исключением принципа распределения капитала. В одном случае капитал распределялся по свертке двух показателей (EPLN и VaR), в другом случае – по единственному показателю EPLN. Как и в предыдущих исследованиях, на протяжении всего периода моделирования было построено 6448 портфелей для каждого из двух способов распределения капитала.
Сравнение прибыли
По аналогии с исследованием, описанным в разделе 4.4.3, будем рассматривать зависимость между прибылью портфеля, получаемой при распределении капитала с помощью свертки, и прибылью, получаемой при формировании портфеля на основании одного показателя. На рис. 4.5.1 по вертикальной оси отложены значения прибыли, полученной при распределении капитала по свертке двух показателей, а по горизонтальной оси – значения прибыли, соответствующие портфелям, сформированным на основании единственного показателя. Напомним, что прибыль портфелей, расположенных на линии безразличия (с коэффициентом наклона, равным 1), одинакова при распределении капитала с помощью многомерной и одномерной системы. Точки, расположенные выше линии безразличия, обозначают портфели, для которых применение многомерной систем привело к увеличению прибыли или уменьшению убытка (по сравнению с тем, что было бы, если бы капитал распределялся в соответствии с одномерной системой).
В тех случаях, когда портфель оказался прибыльным (как для многомерной, так и для одномерной системы распределения капитала), большинство точек располагались ниже линии безразличия. Это означает, что введение дополнительного показателя в систему формирования портфеля привело к снижению прибыли. Вместе с тем, в тех случаях, когда портфель был убыточным (для обеих систем распределения капитала), то большинство точек располагались выше линии безразличия. Это означает, что убытки портфелей, сформированных с помощью многомерной системы, оказались меньше убытков портфелей, основанных на одномерной системе распределения капитала.
Регрессионный анализ подтверждает описанные наблюдения. Коэффициент наклона линии регрессии равен 0,76, что значительно ниже коэффициента линии безразличия равного 1. Хотя intercept (значение, принимаемое зависимой переменной при условии, что значение независимой переменной равно нулю) не равен нулю, он достаточно мал по сравнению с общим диапазоном значений, принимаемых исследуемыми переменными. Поэтому его влиянием на результаты анализа можно пренебречь. Установленная разница угловых коэффициентов статистически достоверна на очень высоком уровне (t = –64,4, p < 0,001). Таким образом, можно сделать вывод о том, что использование многомерной системы для распределения капитала приводит к созданию более консервативного портфеля с меньшим потенциалом прибыльности и меньшим риском убытков.
Сравнение концентрации капитала
Для сравнения многомерной и одномерной систем распределения капитала мы воспользуемся методикой расчета индекса концентрированности портфеля, описанной в разделе 4.4.2. Степень концентрированности капитала при формировании портфеля на основе многомерной и одномерной систем, будем сравнивать с помощью частотного распределения индекса концентрированности.
В тех случаях, когда портфели формировались с помощью весовой функции, основанной на единственном показателе, распределение индекса концентрированности было не нормальным и сильно смещенным в область низких значений индекса (рис. 4.5.2). В 9 и 11 % случаев половина капитала была сконцентрирована всего в 1 и 2 % комбинаций соответственно. Использование двумерной системы распределения капитала кардинально изменило форму распределения индекса концентрированности капитала (рис. 4.5.2). Хотя распределение имеет иррегулярную форму, мода существенно смещена в область более высоких значений индекса. В 10 % случаев половина капитала концентрировалась в 16 % комбинаций.
Таким образом, можно заключить, что введение дополнительного показателя в систему формирования портфеля привело к созданию портфелей с более равномерным распределением капитала (по сравнению с одномерной системой). Поскольку степень концентрированности капитала отражает уровень диверсификации портфеля, можно утверждать, что распределение капитала на основе двумерной системы обеспечивает создание более диверсифицированных, консервативных портфелей.
4.6. Портфельная система распределения капитала
4.6.1. Особенности портфельной системы
Все рассмотренные выше подходы к распределению капитала основывались на оценках отдельных элементов формируемого портфеля. В этом разделе мы остановимся на «портфельном» подходе, основанном на оценках доходности, и рисках всего портфеля в целом, а не отдельных комбинаций. К преимуществам портфельного подхода относится возможность учитывать корреляции между отдельными элементами портфеля. Портфельный подход к распределению капитала может применяться как для одномерной