Кроме того, при использовании выпуклой функции распределение капитала внутри портфеля является более концентрированным (несколько комбинаций получают большую часть капитала). Формирование портфеля по вогнутой функции приводит к более равномерному распределению капитала между элементами портфеля. Следовательно, портфели, создаваемые с помощью выпуклой функции, являются менее диверсифицированными, чем портфели, соответствующие вогнутой функции. Это также является указанием на то, что первый подход более агрессивен, чем второй.
Сравнение выпуклой и вогнутой весовых функций по прибыли
Смоделируем на периоде 2002–2010 гг. две торговые стратегии, аналогичные по всем параметрам той, что была описана в разделе 4.4.1, за исключением принципа распределения капитала. В одном случае будем распределять капитал по выпуклой функции (формула 4.4.1, n = 2), в другом случае – по вогнутой функции (формула 4.4.1, n = 0,5). В качестве показателя для формирования портфеля будем использовать математическое ожидание прибыли.
Всего на протяжении периода моделирования было построено 6448 портфелей для выпуклой функции и столько же – для вогнутой. Начнем со сравнения прибылей и убытков, получаемых при использовании этих двух функций для распределения капитала. Для этого рассмотрим зависимость между прибылью портфеля, получаемой при распределении капитала с помощью трансформированной весовой функции, и прибылью, получаемой при формировании портфеля на основании исходной весовой функции.
Распределение точек в двумерной системе координат (рис. 4.4.9) позволяет сделать выводы об эффекте применения трансформированных весовых функций. Для наглядности мы построили на плоскости регрессии линию «безразличия» с коэффициентом наклона равным 1. Прибыль портфелей, расположенных на этой линии одинакова при распределении капитала по исходной и по трансформированной весовой функции. Если использовать вертикальную ось для значений прибыли, получаемой при распределении капитала по трансформированной весовой функции, а горизонтальную ось – для прибыли по исходной функции, то точки, расположенные выше линии безразличия, обозначают портфели, для которых применение трансформированной функции привело к увеличению прибыли или уменьшению убытка (по сравнению с тем, что было бы, если бы капитал распределялся по исходной функции).
Когда капитал распределялся по выпуклой весовой функции (левый график рис. 4.4.9) и портфель оказался прибыльным (как для трансформированной, так и для исходной весовой функции), то большинство точек располагались выше линии безразличия. Это означает, что использование выпуклой функции при формировании портфеля позволило увеличить прибыль. Однако в тех случаях, когда портфель был убыточным (для обоих видов весовой функции), то большинство точек располагались ниже линии безразличия. Это означает, что при неблагоприятном исходе убытки портфелей, сформированных по выпуклой функции, больше убытков портфелей, построенных с помощью исходной функции.
Регрессионный анализ позволяет количественно выразить описанные наблюдения и проверить их статистическую достоверность. Коэффициент наклона линии регрессии равен 1,19, а коэффициент линии безразличия по определению равен 1. В таблице 4.4.2 приведены данные, доказывающие, что полученная разница угловых коэффициентов статистически достоверна на очень высоком уровне. Следовательно, вывод о том, что использование выпуклой функции для распределения капитала приводит к созданию более агрессивного портфеля (с большим потенциалом прибыльности и с большим риском убытков), не случаен. При этом следует оговориться, что такого рода анализ допустим только в тех случаях, когда intercept линии регрессии (значение принимаемое зависимой переменной при условии, что значение независимой переменной равно нулю) близок к нулю. В нашем примере, хотя intercept ниже нуля на приблизительно $50 и его отличие от нуля статистически значимо (таблица 4.4.2), он тем не менее ничтожно мал по сравнению с общим диапазоном значений, принимаемых исследуемыми переменными. Поэтому влиянием intercept можно пренебречь и считать, что прибыль/убыток портфелей, формируемых с помощью выпуклой функции, приблизительно на 20 % больше аналогичных портфелей, построенных на базе исходной весовой функции (поскольку угловой коэффициент равен 1,19).
Когда капитал распределялся по вогнутой весовой функции (правый график рис. 4.4.9), картина оказалась диаметрально противоположной. Те портфели, которые оказались прибыльным (и для трансформированной, и для исходной весовой функции), располагались в большинстве случаев ниже линии безразличия. Однако, в тех случаях, когда для обоих видов весовой функции портфель был убыточным, большинство точек располагались выше линии безразличия. Это означает, что распределение капитала с помощью вогнутой функции приводит к снижению прибыли. В то же время использование вогнутой функции позволяет снизить размеры убытков при неблагоприятном исходе торговли.
Хотя значение коэффициента наклона линии регрессии (0,89) близко к 1, оно статистически достоверно отличается от 1 на очень высоком уровне значимости (таблица 4.4.2). Следовательно, использование вогнутой функции для распределения капитала приводит к созданию более консервативного портфеля (с меньшим потенциалом прибыльности и меньшим риском убытков).
Сравнение выпуклой и вогнутой весовой функции по концентрации капитала
В предыдущем разделе мы сравнили прибыльность двух торговых стратегий, отличающихся формой весовой функции, используемой для распределения капитала. Теперь мы сравним те же стратегии по степени концентрированности капитала. Ранее мы описали методику расчета индекса концентрированности портфеля и применили ее для сравнения различных показателей, используемых при распределении капитала (рис. 4.4.7). Эту же методику мы применим для целей настоящего анализа: рассчитаем значения индекса концентрированности для каждого из 6448 портфелей, сформированных на исследуемом историческом периоде для каждой из двух весовых функций.
Для того чтобы сравнить степень концентрированности капитала при формировании портфеля с помощью двух трансформаций весовой функции, мы построили частотное распределение индекса концентрированности. Ранее мы продемонстрировали, что в тех случаях, когда портфели формировались с помощью нетрансформированной весовой функции (основанной на том же показателе – «математическое ожидание прибыли») распределение индекса концентрированности было не нормальным и сильно смещенным в область низких значений индекса (левый средний график рис. 4.4.7). При использовании выпуклого варианта трансформированной весовой функции ненормальность распределения усилилась еще больше (рис. 4.4.10). С наибольшей частотой (>16 % случаев) половина капитала была сконцентрирована всего в 1 % комбинаций. Портфели, в которых половина капитала была распределена в более 15 % комбинаций, оказались еще более редкими (менее 2 % случаев).
Использование вогнутой весовой функции для распределения капитала внутри портфеля изменило принципиальным образом форму распределения индекса концентрированности капитала (сравни левый средний график рис. 4.4.7 и рис. 4.4.10). В этом случае трансформация весовой функции привела к почти равномерному распределению индекса концентрированности. С частотой приблизительно равной 4–6 % случаев половина капитала инвестировалась в 1 % комбинаций, 2 % комбинаций и так далее до порядка 18 % комбинаций.
Таким образом, мы показали, что распределение капитала с помощью выпуклой весовой функции приводит к созданию высококонцентрированных портфелей, в которых относительно большая доля капитала инвестируется в малое количество комбинаций. С другой стороны, использование вогнутой весовой функции способствует построению портфелей с гораздо более равномерным распределением капитала. Поскольку степень концентрированности капитала отражает уровень диверсификации портфеля, можно утверждать, что распределение капитала с помощью выпуклой функции обеспечивает создание менее диверсифицированных и более агрессивных портфелей, а применение вогнутой функции приводит к формированию более диверсифицированных и более