Хука−Дживса по проценту попаданий в оптимальную область начиная с 600 попыток. По среднему значению оптимального решения случайный поиск превосходит эти две методики начиная с 700 попыток (сравни рис. 2.7.6 с данными таблицы 1).

Проведенный анализ приводит к ряду полезных выводов относительно применимости случайного поиска для оптимизации торговых стратегий. В общем виде можно утверждать, что при увеличении числа попыток до определенного уровня, вероятность того, что наилучшее из полученных решений окажется достаточно близким к глобальному максимуму, может быть удовлетворительно велика. В частности, случайный поиск может использоваться, если (1) размеры оптимизационного пространства позволяют исследовать порядка 20 % его ячеек и (2) имеется предварительная информация об унимодальности оптимизационного пространства. Последнее возможно в тех случаях, когда в процессе построения стратегии уже производилась оптимизация путем полного перебора, в ходе которой форма пространства была установлена. Если пространство оказывается близким по форме к тому, которое было получено нами для целевой функции «прибыль» (рис. 2.2.2), то при дальнейших доработках и модификациях стратегии можно использовать метод случайного поиска.

2.8. Построение оптимизационной инфраструктуры: решения и компромиссы

Построение инфраструктуры для оптимизации торговых стратегий вообще и опционных стратегий в частности требует принятия целого ряда сложных решений, от продуманности которых зависит не только количество ресурсов, затрачиваемых на выполнение необходимых процедур, но и надежность получаемого результата. В большинстве случаев сложность решений заключается в необходимости поиска компромисса между минимизацией времени, необходимого для вычислений, и максимизацией объема получаемой информации, необходимой для эффективного поиска оптимума.

В частности, выбор структуры оптимизационного пространства требует принятия нескольких компромиссных решений. Первое из них – размерность оптимизации, определяемая количеством параметров. Полный набор параметров, требующих оптимизации, определяется логикой стратегии, однако решение о том, какие из них будут оптимизироваться «техническими методами», аналогичными описанным в этой главе, а какие будут зафиксированы исходя из априорных соображений (или с помощью научных методов), безусловно, является продуктом компромисса. Чем меньше параметров необходимо оптимизировать, тем проще процедуры и тем меньше риск оверфитинга. С другой стороны, отказ от оптимизации (фиксация параметров) повышает риск упустить прибыльный вариант стратегии. Следующее решение – это выбор диапазона допустимых значений параметров и шага оптимизации. Здесь необходим компромисс между затрачиваемым временем и получаемой информацией. Поэтому решение зависит в большой степени от объема вычислительных ресурсов, доступных разработчику стратегии.

Сокращение времени вычислений является важным, но далеко не единственным вызовом, стоящим перед разработчиком стратегий. Принципиально важным является решение о составе, количестве и относительной важности целевых функций, используемых в процессе оптимизации. Мы рекомендовали основывать решение этого вопроса на степени взаимозависимости между разными функциями и на объемах содержащейся в них дополнительной информации. После того как набор целевых функций определен, необходимо выбрать метод многокритериального анализа, что также является нетривиальной задачей. Многие другие факторы, в том числе робастность и устойчивость оптимизационного пространства, могут оказывать решающее влияние на результаты оптимизации. Выбор метода целенаправленного поиска также является одним из основных компромиссов (разрешаемых на основе предварительного изучения свойств оптимизационного пространства), от которого зависит надежность конечного оптимального решения.

В этой главе мы использовали базовый вариант дельта-нейтральной стратегии для того, чтобы на ее примере продемонстрировать общие подходы к поиску компромиссов и принятию системных решений необходимых для организации эффективной процедуры оптимизации. Обсуждая основные структурные элементы оптимизации дельта-нейтральной стратегии, мы стремились поместить их в контекст общей схемы оптимизации опционных стратегий. Поскольку каждый элемент формируется исходя из специфических особенностей конкретной стратегии, мы не могли дать готовые универсальные решения, пригодные для всех типов стратегий. Вместо этого мы попытались разработать систему рекомендаций, позволяющую построить надежную инфраструктуру, подходящую для оптимизации разных опционных стратегий.

Глава 3. Управление рисками

На сегодняшний день не существует универсального определения, способного охватить все аспекты такого сложного и многогранного понятия, как «риск». По сути, приходится признать, что, оперируя ежедневно этим понятием, миллионы людей – журналистов, бизнесменов, ученых, профессиональных инвесторов и рядовых потребителей финансовых услуг – не в состоянии дать строгое определение обсуждаемого ими предмета. Это тем более удивительно, что понятие риска является краеугольным камнем, на котором строится вся теория экономики, финансов и многих смежных с ними дисциплин. Более того, подобная ситуация существует в двух других – бесспорно основных – областях исследований окружающего нас материального мира – биологии и физике. В биологии не существует универсального определения вида. И это при том, что данное понятие лежит в фундаменте теории макроэволюции – основе основ всех важнейших разделов биологии. Физики, в свою очередь, также не пришли к единому и универсальному определению понятия энергии. Нет необходимости в доказательствах того, что энергия является ключевым элементом, без точного понимания которого невозможна ни полная разработка квантовой теории микромира, ни построение «окончательной теории всего», претендующей на описание зарождения и эволюции Вселенной, а также прогноз ее дальнейшей судьбы.

Не удивительно ли, что три основные области человеческих знаний – биология, экономика, физика – возводят свои теории на основе базовых элементов, не имеющих строгого и однозначного научного определения? Мы оставляем этот вопрос без ответа, поскольку даже слабая попытка найти на него ответ уведет нас в сторону не только от основной темы, но и от системы строго рационального мышления, которого авторы неукоснительно придерживаются в данной книге.

3.1. Особенности оценки риска опционов

Все финансовые инструменты можно условно разделить на две категории – имеющие линейную и нелинейную платежную функцию. К первой категории относятся акции, товары, валюты и другие активы, прибыли и убытки от владения которыми прямо пропорциональны их цене. К нелинейным активам относятся некоторые производные финансовые инструменты, стоимость которых зависит от цены другого актива, называемого базовым. Зависимость прибылей и убытков этих инструментов от цены базового актива нелинейна. Наиболее распространенным среди нелинейных инструментов являются опционы. Подходы, применяемые к оценке рисков линейных и нелинейных инструментов, отличаются принципиально.

3.1.1. Оценка риска линейных финансовых инструментов

Основы теории управления рисками закладывались в те времена, когда производные финансовые инструменты не имели широкого распространения. Соответственно, все классические методики оценки рисков были разработаны для линейных инструментов. В качестве базовой концепции для количественного выражения риска было принято утверждение, что риск владения определенным активом пропорционален мере изменчивости его цены.

Дать объективную оценку изменчивости цены можно только на основе информации о ценовых колебаниях, имевших место в прошлом (другие оценки, основанные на экспертных мнениях, нельзя считать объективными). Такой подход имеет существенный недостаток, поскольку основывается на экстраполяции исторических данных и предположении, что вероятность будущих событий можно рассчитать исходя из наблюдения частоты возникновения аналогичных событий в прошлом. Хотя во многих областях деятельности (например, расчет рисков автострахования) данная методика может быть приемлема, многократно доказано, что в отношении финансовых рынков она, мягко говоря, несовершенна. Тем не менее, несмотря на все недостатки и неточности, возникающие при оценках рисков на основе исторических данных, такой

Вы читаете Опционы
Добавить отзыв
ВСЕ ОТЗЫВЫ О КНИГЕ В ИЗБРАННОЕ

0

Вы можете отметить интересные вам фрагменты текста, которые будут доступны по уникальной ссылке в адресной строке браузера.

Отметить Добавить цитату