в о в с я к и й т р е у г о л ь н и к м о ж н о в п и с а т ь к р у г; ц е н т р е г о л е ж и т н а п е р е с е ч е н и и р а в н о д е л я щ и х д в у х у г л о в т р е у г о л ь н и к а. Легко видеть, что так как точка пересечения равно-делящих двух углов одинаково удалена от сторон третьего угла, то она должна лежать и на равноделящей третьего угла треугольника. Значит:
р а в н о д е л я щ и е т р е х у г л о в т р е у г о л ь н и к а п е р е с е к а ю т с я в о д н о й т о ч к е.
§ 78. Вписанный и описанный квадраты
Вписать в данный круг квадрат весьма просто; надо провести в круге два диаметра, встречающиеся под прямым углом, и концы их соединить прямыми линиями. (Объясните на черт. 217, почему получающийся при этом четырехугольник – квадрат).

Черт. 216 Черт. 217 Черт. 218
Чему равна сторона вписанного квадрата, если радиус круга известен, легко вычислить из треугольника

Описать около данного круга квадрат можно так (черт. 218): начертив в нем два взаимно перпендикулярных диаметра, проводят через их концы перпендикуляры. (Докажите, что получающийся четырехугольник-квадрат).
Легко убедиться, что сторона описанного квадрата равна диаметру круга (докажите это).
§ 79. Вписанный правильный шестиугольник
Чтобы найти способ вписать в данный круг правильный шестиугольник, определим сначала длину его стороны, считая радиус круга известным. Пусть

Другими словами, сторона правильного вписанного шестиугольника равна радиусу круга.
Отсюда вытекает способ вписать в круг правильный шестиугольник: надо растворить циркуль на величину радиуса и засечь вдоль окружности шесть раз, а затем соединить точки деления, прямыми линиями.
§ 80. Вписанный равносторонний треугольник
Чтобы вписать в круг равносторонний треугольник, можно воспользоваться способом построения правильного шестиугольника: разделив окружность на 6 равных частей соединяют точки: деления через одну.
Длину стороны вписанного, равностороннего треугольника, считая радиус круга известным (