§ 75. Определения
Треугольник или многоугольник называется вписанным в окружность, если все их вершины расположены на окружности (черт. 217). Они называются описанными около круга, если в с е и х с т о р о н ы касаются окружности (черт. 213). Сейчас мы познакомимся с некоторыми свойствами описанных и вписанных фигур.

§ 76. Как описать окружность около данного треугольника
Предварительное упражнение
Во скольких точках могут пересечься три прямые линии?
Докажем сначала, что описать окружность можно около всякого треугольника, какой бы формы он ни был. Пусть у нас имеется треугольник
проведенном через середину стороны
Так как подобное рассуждение применимо ко всякому треугольнику, то не существует такого треугольника, около которого нельзя было бы описать окружности. Способ же построения ее вытекает из сказанного: надо провести перпендикуляры через середины двух сторон треугольника; точка пересечения перпендикуляров есть центр описанной окружности; соединив ее с одной. из вершин треугольника, найдем радиус этой окружности. Итак:
о к о л о в с я к о г о т р е у г о л ь н и к а м о ж н о о п и с а т ь о к р у ж н о с т ь; ц е н т р е е л е ж и т н а п е р е с е ч е н и и п е р п е н д и к у л я р о в, п р о в е д е н н ы х ч е р е з с е р е д и н у д в у х с т о р о н т р е у г о л ь н и к а. Попутно мы можем установить следующее свойство треугольника. Так как точка пересечения перпендикуляров, проведенных через середины двух сторон треугольника, одинаково удалена от концов третьей стороны, то она должна находиться и на перпендикуляре, проведенном через середину этой стороны треугольника. Значит: п е р п е н д и к у л я р ы, п р о в е д е н н ы е ч е р е з с е р е д и н ы т р е х с т о р о н т р е у г о л ь н и к а, п е р е с е к а ю т с я в о д н о й т о ч к е.
§ 77. Как вписать круг в данный треугольник
Покажем сначала, что во всякий треугольник, какой бы он ни был формы, можно вписать круг. Пусть имеется треугольник
Так как подобное рассуждение применимо ко всякому треугольнику, то не существует такого треугольника, в который нельзя бы вписать круг. Способ же построения круга вытекает из сказанного: надо разделить два угла пополам – точка пересечения равноделящих есть центр вписанного круга; проведя через него перпендикуляр к одной из сторон, найдем радиус этого круга. Итак: