равенства проекций? – Каким свойством обладает прямая, проведенная перпендикулярно к отрезку через его середину? – Перечислите все известные вам признаки равенства прямоугольных треугольников.

Применения

62. Извилистый ручей протекает между двумя селениями. Как разыскать все места ручья, одинаково ударенные от обоих селений?

Р е ш е н и е. Соединив селения прямой линией, провешивают через ее середину перпендикуляр. Все точки пересечения этого перпендикуляра с ручьем и будут искомые.

63. Где надо поместить фонарь внутри треугольного участка, чтобы все углы «его были освещены одинаково?

Р е ш е н и е. Искомая точка должна быть одинаково удалена от всех вершин треугольника. Сначала найдем все те точки, которые одинаково отстоят от двух вершин: для этого проведем перпендикуляр через середину одной. стороны треугольника. Затем проведем перпендикуляр через середину другой стороны: на нем расположены все точки, равноудаленные от двух других вершин. Искомая точка лежит на пересечении обоих перпендикуляров.

§ 56. Средняя линия треугольника

Предварительное упражнение

В треугольнике АВС (черт. 155) точка Dесть середина А В, а прямая EFпараллельна АВ. Докажите: 1) что треугольник FCE= треугольнику DBE; 2) что фигура ADEF– параллелограмм.

Средней линией треугольника называется прямая, соединяющая середины двух его сторон (DEна черт. 155). Этот отрезок обладает следующими свойствами:

с р е д н я я л и н и я т р е у г о л ь н и к а п а р а л л е л ь н а п р о т и в о л е ж а щ е й с т о р о н е и р а в н а е е

п о л о в и н е.

Удостоверимся в этом. Пусть в треугольнике АBС (черт 155) прямая DE соединяет середины сторон; покажем, что она параллельна стороне АС и равна ее половине. Для этого через точку Е проведем EF параллельно АВ. Треугольники DBE и FEC равны (почему?), поэтому уг. 1 = уг. 2, и значит, DE параллельно АС; кроме того DE = FCA так как четырехугольник ADEF есть параллелограмм (почему?), то

DE = AF. Итак, DE = FC = AF = ? AC.

§ 57. Деление отрезка на равные части

Мы умеем с помощью циркуля и линейки делить отрезок только на 2, на 4, на 8 и т. д. число равных частей (§ 21). Укажем теперь способ делить отрезок на любое число равных частей.

Пусть потребуется отрезок АВ (черт. 156) разделить на 5 равных частей. Проведем от одного конца этого отрезка, например, от В, под произвольным углом прямую ВС. На этой прямой отложи от конца В пять раз какой-нибудь отрезок; получим точки 1, 2, 3, 4, 5. Последнюю точку 5 соединим с концом А данного отрезка и ч через точ-ки1, 2, 3, 4 проведем прямые, параллельные прямой A5. Можно указать, что эти прямые разделят отрезок АB на 5 равных частей в точках I, II, III, IV.

Добавить отзыв
ВСЕ ОТЗЫВЫ О КНИГЕ В ИЗБРАННОЕ

0

Вы можете отметить интересные вам фрагменты текста, которые будут доступны по уникальной ссылке в адресной строке браузера.

Отметить Добавить цитату