§ 51. Равносторонний треугольник
Треугольник с тремя равными сторонами называется р а в н о с т о р о н н и м. Так как против равных сторон в одном и том же треугольнике лежат равные углы, то все углы равностороннего треугольника равны, и, следовательно, каждый из них равен. 180°: 3 = 60°.
Обратно: если каждый угол треугольника равен 60°, то все стороны такого треугольника одинаковы, – потому что, против равных углов в одном и том же треугольнике лежат, равные стороны.
Применения
57. Без транспортира построить угол в 60°. В 30°. В 15°. В 120°. В 75°.
Р е ш е н и е. Строим равносторонний треугольник произвольных размеров; каждый его угол = 60°. Разделив угол этого треугольника пополам, получим угол в 30°. Разделив еще раз пополам, будем иметь угол в 15°. Угол в 120° = 90° + 30°. Угол в 75° =60° + 15° = 90° – 15°.
§ 52. Катет против угла в 30°
Предварительное упражнение
Равносторонний треугольник разбит равноделящей одного из углов на два треугольника. Определить их углы.
уг.

Итак, мы убедились, что
к а т е т п р о т и в у г л а в 30° р а в е н п о л о в и н е г и п о т е н у з ы.
Применения
58. Лестница длиною 6 м приставлена к фонарному столбу под углом 30° к нему (черт 148). Каково расстояние от основания лестницы до основания фонаря?
Р е ш е н и е. Так как катет против 30° равен половине гипотенузы, то искомое расстояние = 3 м.
59. Длина стропильной ноги
Р е ш е н и е. Искомый угол
Пусть у нас имеется прямоугольный треугольник (черт. 146)
§ 53. Неравные стороны и углы