алгоритмом'.
Квазикартанов алгоритм может быть применен не только к компактным, но и к любым простым группам Ли. Его можно применять и несколько раз, и я называю группу Ли, полученную из простой группы Ли r- кратным применением квазикартанова алгоритма, 'r-квазипростой группой Ли'.
Понятие простоты, квазипростоты и r-квазипростоты имеют место и для алгебр. Ассоциативная алгебра называется простой, если она не содержит двусторонних идеалов. Как доказал Э.Картан, простыми ассоциативными алгебрами над полем R являются алгебры M(n), CM(n) и HM(n) вещественных, комплексных и кватернионных матриц n -го порядка. В частности, простыми алгебрами являются и сами алгебры C и H. Применяя Картанов алгоритм к алгебрам C и H мы получаем алгебры C' двойных чисел и H' псевдокватернионов. Применяя к этим алгебрам квазикартанов алгоритм, мы получим квазипростые алгебры C0 дуальных чисел и H0 полукватернионов.
Проста и альтернативная алгебра О октонионов. Применяя к ней Картанов алгоритм, мы получим простую альтернативную алгебру O' псевдооктонионов, а применяя к алгебре О квазикартанов алгоритм, мы получим квазипростую альтернативную алгебру O0 полуоктонионов.
Мое внимание к квазипростым алгебрам привлек И.М.Яглом еще в то время, когда я готовил докторскую диссертацию. Позднее он заинтересовал меня вырожденными неевклидовыми геометриями, группами движений которых являются квазипростые и r-квазипростые группы Ли.
Наиболее известными квазипростыми группами Ли являются группы движений евклидова и псевдоевклидовых пространств. Группа движений n- мерного вещественного евклидова пространства является тройственной по Картану по отношению к группам движений n-мерных вещественных эллиптического и гиперболического пространств. Группа движений n- мерного вещественного псевдоевклидова пространства индекса k является тройственной по Картану по отношению к группам движений n-мерных вещественных псевдоэллиптических пространств индексов k и k+1.
Если дополнить n-мерные евклидово и псевдоевклидовы пространства их бесконечно удаленными гиперплоскостями до проективного пространства, гиперсферы евклидова и псевдоевклидовых пространств высекают из этих гиперплоскостей мнимую и вещественную квадрики. Эти квадрики можно рассматривать как абсолюты (n-1)-мерных эллиптического и псевдоэллиптических пространств. Бесконечно удаленные гиперплоскости евклидова и псевдоевклидовых пространств вместе с квадриками, высекаемыми из них гиперсферами этих пространств, называются абсолютами евклидова и псевдоевклидовых пространств.
По принципу двойственности проективного пространства евклидову пространству и псевдоевклидовым пространствам вместе с их абсолютами соответствуют коевклидово пространство и копсевдоевклидовы пространства, т.е. пространства с проективными метриками, абсолютами которых являются мнимый и вещественные гиперконусы второго порядка с точечными вершинами. Расстояния между точками этих пространств, расположенными на прямых, не проходящих через вершину гиперконуса, измеряются как на эллиптических и гиперболических прямых. Расстояния между точками прямых, проходящих через вершину гиперконуса, измерятся как на евклидовых прямых. За расстояния между точками коевклидова и копсевдоевклидовых пространств можно принять в первом случае углы между пересекающимися гиперплоскостями евклидова и псевдоевклидовых пространств, а во втором случае - расстояния между параллельными гиперплоскостями этих пространств.
Евклидово и коевклидово пространства являются частными случаями квазиэллиптического пространства дефекта m. Это пространство также является пространством с проективной метрикой, абсолют которого состоит из мнимого гиперконуса с плоской вершиной размерности n-m-1 и мнимой квадрики в этой плоскости. Расстояния между точками, расположенными на прямых, не пересекающих вершинную плоскость гиперконуса, и на прямых, лежащих в этой вершинной плоскости, измеряются как на эллиптических прямых. Расстояния между точками прямых, пересекающих вершинную плоскость, измеряются как на евклидовых прямых. При m =0 это пространство евклидово, при m =n-1 это пространство коевклидово.
Заменяя в определении квазиэллиптического пространства мнимый гиперконус и мнимую квадрику, или одну из этих поверхностей, вещественными, мы получим квазипсевдоэллиптические пространства, частными случаями которых являтся псевдоевклидовы и копсевдоевклидовы пространства.
Группы движений квазиэллиптических и квазипсевдоэллиптических пространств являются квазипростыми группами тройственными по Картану по отношению к группам движений эллиптического и псевдоэллиптического пространств или по отношению к группам движений двух псевдоэллиптических пространств разных индексов.
Вершинные (n-m-1)-мерные плоскости гиперконусов абсолютов n-мерных квазиэллиптических и квазипсевдоэллиптических пространств являются (n-m-1)-мерными эллиптическими пространствами или содержат (n-m-1)-мерное псевдоэллиптическое пространство.
Заменяя эти пространства (n-m-1)-мерными квазиэллиптическими или квазипсевдоэллиптическими пространствами, мы получим n-мерные биквазиэллиптические и биквазипсевдоэллиптические пространства. Группы движений этих пространств являются биквазипростыми группами Ли.
Повторяя эту операцию r-1 раз, мы получим r-квазиэллиптические и r-квазипсевдоэллиптические пространства. Группы движений этих пространств являются r-квазипростыми группами Ли.
Эти пространства были впервые определены Д.М.Ю.Соммервилем в статье 'Классификация проективных метрик'. В.Бляшке ввел термин 'квазиэллиптическое пространство', рассматривая 3-мерное пространство этого типа дефекта 1.
И.И.Железина в своей диссертации, которой я руководил, рассматривала это же пространство и 3- мерные квазипсевдоэллиптические пространства того же дефекта.
Мои ученицы Т.Г.Чахленкова и Е.У.Ясинская изучали n-мерные квазиэллиптические, квазипсевдоэллиптические, r-квазиэллиптические и r-квазипсевдоэллиптические пространства.
Важными частными случаями биквазиэллиптических пространств являются изотропные и галилеевы пространства. Мы получим n-мерное изотропное пространство, если заменим в бесконечно удаленной гиперплоскости n-мерного евклидова пространства метрику (n-1)-мерного эллиптического пространства метрикой (n-1)-мерного коевклидова пространства. Заменяя в той же гиперплоскости метрику эллиптического пространства метрикой (n-1)-мерного евклидова пространства мы получим n-мерное галилеево пространство.
Название изотропного пространства объясняется тем, что такими пространствами являются изотропные гиперплоскости псевдоевклидовых пространств индекса 1.
Пространство-время специальной теории относительности является 4-мерным псевдоевклидовым пространством индекса 1. Пространство- время классической механики Галилея - Ньютона является 4- мерным изотропным пространством.
Э.Картан рассматривал 4-мерное изотропное пространство в связи с классической механикой в своей работе 'О многообразиях аффинной связности и обобщенной теории относительности'. В заметке 'Об одном вырождении евклидовой геометрии' Картан изучал дифференциальную геометрию 2-мерной изотропной плоскости.
Геометрии вещественных квазипростых и r-квазипростых групп Ли посвящена 5-я глава моей книги 1969 г.
В работах многих моих учеников рассматривалась дифференциальная геометрия этих пространств. В частности, Н.Е.Марюкова в своей диссертации рассматривала дифференциальную геометрию галилеева пространства, а позже нашла геометрическое истолкование уравнения Клейна-Гордона в 3-мерном галилеевом пространсве, это истолкование было изложено в нашей совместной статье 1997 г.
Квазипростые и r-квазипростые группы Ли могут быть группами движений и в пространствах над алгебрами: квазиэллиптических и квазипсевдоэллиптических, r-квазиэллиптических и r-квазипсевдо- эллиптических пространств над простыми алгебрами, эллиптических и псевдоэллиптических пространств над квазипростыми алгебрами и т.д. Группы движений дуальных пространств тройственны по Картану по отношению к группам движений одноименных комплексных и двойных пространств.
Изоморфизмы между простыми группами Ли определяют изоморфизмы межды квазипростыми и биквазипростыми группами, которые также связаны с геометрическими интерпретациями соответственных пространств. Такими интерпретациями являются интерпретация А.П.Котельникова многообразия ориентированных прямых 3-мерного евклидова пространства в виде сферы 3-мерного дуального евклидова