Таким образом, Q — это единица сложности молекулярных структур, задействованных в единичном акте человеческого сознания. Для человеческого рода в целом
Q = 1033 бит (58)
— число, сообщающее нам, какое множество материальных ресурсов требуется для поддержания жизни разумного сообщества.
Существо или сообщество существ с данным Q и данной температурой ? будет тратить энергию со скоростью:
m = kfQ?2. (59)
Здесь m — скорость обмена веществ, измеряемая в эргах в секунду, k — константа Больцмана, a f — коэффициент, использовавшийся в (56). Важно отметить, что m пропорционально квадрату ?, причем один фактор ? происходит из взаимоотношений между энергией и энтропией, а второй фактор ? — из принятой зависимости скорости жизненных процессов от температуры.
Я предполагаю, что жизнь свободна выбирать себе температуру ?(t) таким образом, чтобы максимально увеличить свои шансы на выживание. Существуют два физических ограничения на ?(t). Первое — ?(t) всегда должна быть выше температуры универсальной фоновой радиации, являющейся самой низкой из достижимых температур. Иначе говоря,
?(t) >aR-1, а = 3•1028 deg cm, (60)
где R — радиус вселенной, изменяющийся в зависимости от t, согласно (7) и (8). В настоящее время условие (60) удовлетворяется со 100–кратным запасом. Второе ограничение ?(t) — это то, что физический механизм может существовать, лишь выделяя в пространство огромное количество лишнего тепла, возникающего в результате обмена веществ. Чтобы сформулировать второе ограничение количественно, примем, что лишнее тепло удаляется из организма посредством излучения и что единственная значимая форма излучения — электромагнитное. Тогда мы получаем абсолютный верхний предел
I(?)<2?(Ne2/mh2c3) (k?)3 (61)
мощности, которая может испускаться материальным источником, содержащим в себе N электронов, при температуре ?. Здесь
— высота максимума спектра планковского излучения. Поскольку формулы (61) я в учебниках не нашел, приведу краткое доказательство, используя статью Бета и Сэлпитера (Bethe and Salpeter, 1957). Формула мощности, выделяемой излучением электрического диполя, следующая:
Здесь p — поляризационный вектор фотона, испускаемого внутри угла d?, i — начальное, a j — конечное состояния излучателя,
?i = Z-1exp (-Еi/k?) (64)
— вероятность, что излучатель изначально находится в состоянии i,
?ij=h-1(Ei-Ej) (65)
— частота фотона, a Dij — матричный элемент дипольного момента излучателя между состояниями i и j. Сумма (63) определяется только между парами состояний (i, j), причем
Еi >Еj. (66)
Теперь у нас есть точное правило суммирования дипольных моментов:
Однако использовать формулу (67) для нахождения связи с (63) следует с осторожностью, поскольку некоторые члены в (67) отрицательные. Здесь может помочь следующая хитрость. В каждом члене (63) ?^, согласно (66), положительно; таким образом, (62) дает нам:
?i?ij3< ??? (k?/h)3(exp (h?ij / k?) - 1) = ? (?j - ?i) (k?/h) (68)
Таким образом, из (63) следует:
Теперь индексы суммирования (i, j) можно поменять в той части формулы (69), которая содержит ?i. Получаем результат:
где суммирование теперь проводится по всем (i, j) независимо от того, выполняется (66) или нет. Правило суммирования (67) можно затем использовать в (70) и получить результат (61).
Это доказательство (61) предполагает, что все частицы, кроме электронов, обладают такой большой массой, что при расчетах генерируемого излучения ими можно пренебречь. Оно предполагает также, что можно пренебречь магнитным дипольным и многополюсным излучением. Интересно было бы узнать, можно ли доказать (61), не используя дипольное приближение (63).
С первого взгляда может показаться странным, что правая сторона (61) пропорциональна ?3, а не ?4, поскольку стандартная формула Стефана–Больцмана для мощности, испускаемой черным телом, пропорциональна ?4. Однако в этом случае формула Стефана– Больцмана неприменима, поскольку она требует от излучателя оптической плотности. Максимум испускаемой мощности, заданный (61), может быть достигнут, только если излучатель оптически прозрачен.
Сделав это небольшое отступление в область физики, вернемся к биологии. Второе ограничение на температуру ? связано с тем, что скорость траты энергии (59) не должна превышать мощность (61), способную выделяться в пространство. Это ограничение накладывает на нас нижний температурный предел: