d = (h2me2), (34)
где m — масса электрона. Таким образом, получаем интеграл действия
S = (2Amp/5m)1/2 = 27А1/2, (35)
где тр — масса протона, а А — атомный вес движущегося атома. Для атома железа, у которого А = 56, a S = 200, (30) дает
Т= 1065 лет. (36)
Даже самые прочные материалы не смогут сохранить свою форму или химическую структуру за временной период, сравнимый с (36). В период 1065 лет любой камень начнет вести себя как жидкость, под воздействием гравитации постепенно принимая сферическую форму. Его атомы и молекулы будут непрерывно перемешиваться, как молекулы в капле воды.
Ж. Вся материя превращается в железо
При абсолютном нуле в материи будут продолжаться как ядерные, так и химические реакции. Элементы тяжелее железа будут превращаться в железо посредством различных процессов, таких, как расщепление и альфа–излучение. Элементы легче железа будут соединяться путем реакций слияния ядер и постепенно также превращаться в железо. Рассмотрим, например, реакцию слияния, в которой два ядра, обладающие атомным весом 1/2А и зарядом 1/2Z, объединяются, образуя ядро (A, Z). Кулоновское взаимоотталкивание ядер эффективно экранируется электронами, пока они не приблизятся друг к другу на расстояние
d = Z-1/3 (h2/me2) (37)
Кулоновский барьер обладает толщиной d и высотой
U = (Z2e2/4d) = ?Z7/3 (e4m/h2). (38)
Сокращенная масса для относительного движения двух ядер:
М = 4?Amр. (39)
Тогда интеграл действия (32) получает значение
S = (?AZ5/3(mp/m))1/2 = 30A?Z5/6. (40)
Для двух ядер, вместе образующих железо, Z = 26, А = 56, S = 3500, и
Т= 101500 лет. (41)
В промежуток времени, описанный формулой (41), обычная материя радиоактивна и постоянно генерирует ядерную энергию.
З. Превращение железных звезд в нейтронные звезды
По истечении срока (41) большая часть материи во вселенной, в обычном состоянии находящаяся в форме звезд с низкой массой, превращается в белые карлики — холодные шары, состоящие из чистого железа. Но железная звезда — это еще не самое низкоэнергетическое состояние. Она может избавиться от огромного количества энергии, если превратится в нейтронную звезду. Чтобы коллапсировать, ей необходимо лишь преодолеть барьер конечной высоты и толщины. Интересно спросить, существует ли асимметричный коллапс, проходящий через более низкую седловую точку, чем симметричный коллапс. Я не смог найти приемлемую асимметричную форму, так что мы предполагаем, что коллапс имеет сферическую симметрию. В интеграле действия (31) координата х становится радиусом звезды, и интеграл берется от г, радиуса нейтронной звезды, до R, радиуса железной звезды, с которого начинается коллапс. Высота барьера U(x) будет зависеть от уравнения состояния материи, которое при близости х к г весьма неопределенно. По счастью, уравнение состояния материи хорошо известно для большей части отрезка интегрирования, когда х велико по сравнению с г и основной вклад в U(x) составляет энергия нерелятивистских дегенерирующих электронов:
U(x) = (N5/3h2/2mx2), (42)
где N — число электронов в звезде.
Интегрирование по х в (31) дает логарифм:
log(R/R0), (43)
где R0 — радиус, при котором электроны становятся релятивистскими и формула (42) перестает работать. Для звезд с низкой массой этот логарифм будет порядка единицы, а интеграл, соответствующий релятивистской области x<R0, будет тоже порядка единицы. Масса звезды —