длинными (по сравнению с диаметром нейрона, который составляет лишь 25—30 нм) — до нескольких миллиметров или даже длиннее. Более того, в зависимости от обстоятельств они способны расти или сокращаться, а также транспортировать молекулы нейромедиаторов. Внутри аксонов и дендритов также имеются микротрубочки. Хотя, как правило, на всю длину аксона каждая отдельная микротрубочка не тянется, они образуют сообщающиеся сети, охватывающие всю клетку, соединяясь между собой посредством упоминавшихся выше MAP-мостиков. Микротрубочки, по-видимому, ответственны за поддержание интенсивности синапсов и, несомненно, за изменение этой интенсивности в случае необходимости. Более того, они, похоже управляют ростом новых нервных окончаний, направляя их к точкам соединений с другими нервными клетками.
Поскольку после окончательного формирования мозга деление нейронов прекращается, необходимости в этой функции центросомы здесь нет. В центросомах нейронов, расположенных вблизи ядра, часто вовсе нет центриолей. Микротрубочки тянутся от центросом к окрестности пресинаптических окончаний аксона, а также в другую сторону, к дендритам и, через сокращающиеся актиновые нити, к дендритным шипикам, часто образующим постсинаптические окончания синаптической щели. Эти шипики способны расти и вырождаться, что, по-видимому, является существенным элементом общей пластичности мозга, благодаря которой система взаимных соединений в мозге подвергается непрерывным тонким изменениям. Насколько мне известно, существуют убедительные экспериментальные свидетельства важной роли микротрубочек в управлении пластичностью мозга.
Упомянем еще об одном любопытном факте. В пресинаптических окончаниях аксонов содержатся некие ассоциированные с миктротрубочками вещества, «работа» которых связана с высвобождением нейромедиаторов, а молекулы весьма примечательны с геометрической точки зрения. Эти вещества —
Рис. 7.11. Молекула клатрина (похожая общей структурой на фуллерен, но составленная не из атомов углерода, а из более сложных субструктур — белковых тримеров, называемых трискелионами). Изображенный на рисунке клатрин напоминает внешне обыкновенный футбольный мяч.
Рис. 7.12. Клатрины, подобные тому, что изображен на рис. 7.11, располагаются (вместе с окончаниями микротрубочек) в пресинаптическом утолщении аксона и, по всей видимости, участвуют в управлении интенсивностью синапса; также на интенсивность синапса влияют сокращающиеся актиновые нити в дендритных шипиках, управляемых микротрубочками.
В одном из предыдущих параграфов был поставлен важный вопрос: что управляет изменением интенсивности синапсов и определяет места размещения функционирующих синаптических связей? Учитывая имеющиеся свидетельства, можно уверенно предположить, что центральную роль в этих процессах играет
В самом деле, если простейшими вычислительными блоками мы теперь будем считать димеры тубулина, то придется предположить, что потенциальная вычислительная мощность мозга просто неимоверно превосходит все то, что предполагали самые смелые теоретики от ИИ. Основываясь на «цельнонейронной» модели, Ханс Моравек в своей книге «Дети разума» [267] предположил, что человеческий мозг может в принципе достичь производительности порядка 1014 операций в секунду, но не более того; это при том, что в мозге имеется около 1011 функционирующих нейронов, каждый из которых способен посылать примерно по 103 сигналов в секунду (см. §1.2). Если же в качестве элементарного вычислительного блока взять димер тубулина, то следует учесть, что на каждый нейрон приходится около 107 димеров; соответственно, элементарные операции теперь выполняются где-то в 106 раз быстрее, в результате чего получаем 1027 операций в секунду. Возможно, производительность современных компьютеров и вправду уже начинает приближаться к первой цифре, 1014 операций в секунду (как весьма убежденно доказывают Моравек и его единомышленники), однако несмотря на все эти успехи, достичь в обозримом будущем производительности 1027 операций в секунду не представляется возможным.
Разумеется, можно смело утверждать, что мозг работает далеко не со стопроцентной «микротрубочковой» эффективностью, какую приведенные выше цифры предполагают. Тем не менее, ясно, что возможность «микротрубочкового вычисления» (см. [183]) позволяет совсем по-иному взглянуть на некоторые из аргументов в пользу неминуемого наступления эпохи искусственного интеллекта человеческого уровня. Можем ли мы теперь поверить хотя бы в то, что уже сегодня возможно{92} численно воспроизвести умственную деятельность червя нематоды, только потому, что мы вроде бы «закартографировали» и численно смоделировали его нервную систему? Как было отмечено в §1.15, умственные способности обычного муравья намного превосходят все то, что на настоящий момент реализовано посредством стандартных ИИ-процедур. Впору поинтересоваться, сколько же муравей выигрывает в производительности благодаря гигантскому массиву своих «микротрубочковых информационных нанопроцессоров», если сравнивать с тем, чего он смог бы добиться, располагай он лишь «переключателями цельнонейронного типа». Что до парамеции, то тут, как вы понимаете, оснований для предъявления иска нет.
Однако аргументы, представленные в первой части, предполагают гораздо более сильное заявление. Я утверждаю, что способность человека к пониманию выходит за рамки какой угодно вычислительной схемы. Если мозгом человека управляют микротрубочки, то в микротрубочковых процессах должно быть что-то принципиально отличное от простого вычисления. Я утверждал, что такая невычислимая активность должна быть следствием достаточно макроскопической квантовой когерентности, объединенной неким тонким образом с макроскопическим поведением — с тем, чтобы обеспечить возможность протекания в системе тех новых физических процессов, что придут на смену бытующей в современной физике паллиативной R-процедуре. В качестве первого шага мы должны выяснить, какова же подлинная роль
7.5. Квантовая когерентность внутри микротрубочек
Есть ли у нас основания предполагать, что внутри микротрубочек существует квантовая когерентность? Вернемся ненадолго к обсуждавшимся в §7.1 идеям Фрёлиха [131] о возможности феноменов квантовой когерентности в биологических системах.