«понять» в рассуждениях Гёделя! Понимание работает в гораздо более глобальном масштабе, и если в процессе каким-то образом участвуют цитоскелеты, то этот феномен должен носить коллективный характер, задействуя огромное количество цитоскелетов одновременно.

Согласно Фрёлиху, биологические макроскопические коллективные квантовые феномены — может быть, той же природы, что и конденсат Бозе—Эйнштейна, — определенно возможны, даже внутри «горячего» мозга (см. также [258]). Здесь же мы предполагаем, что в относительно «крупных» квантовокогерентных состояниях должны участвовать не только молекулы внутри отдельных микротрубочек — такое состояние должно распространяться от одной микротрубочки к другой. Квантовая когерентность должна не просто «охватить» одну-единственную микротрубочку (пусть и, как мы помним, весьма протяженную), но перейти дальше, в результате чего большое количество различных микротрубочек в цитоскелете нейрона — если не все — должны образовать единое квантовокогерентное состояние. Мало того, квантовая когерентность должна преодолеть «синаптический барьер» между «своим» нейроном и следующим. Не много проку в глобальности, которая разбросана по изолированным друг от друга клеткам! Самостоятельная единица сознания может возникнуть, в нашем описании, лишь тогда, когда квантовая когерентность в том или ином виде получает возможность распространяться на некую существенную (по меньшей мере) часть всего мозга.

И вот такое вот поразительное — я бы даже сказал, почти невероятное — устройство Природе пришлось создавать с помощью одних лишь биологических средств. Я, впрочем, убежден (и не без оснований), что у нее таки все получилось, и главным свидетельством тому может служить факт наличия у нас разума. Нам еше многое предстоит понять в биологических системах и в том, как они творят свои чудеса — многое в биологии далеко превосходит возможности современных физических технологий. (Взять, к примеру, крохотного, в миллиметр величиной, паучка, искусно плетущего замысловатую паутину.) Вспомним и об экспериментах Аспекта (см. §5.4), в которых наблюдались (с помощью вполне физических устройств) кое-какие квантовокогерентные эффекты (ЭПР-сцепленность пар фотонов), действующие на расстоянии нескольких метров. Несмотря на технические трудности, связанные с проведением экспериментов, позволяющих обнаружить такие «дальнодействующие» квантовые эффекты, не следует исключать возможность, что Природа смогла отыскать биологические способы как для этого, так и для чего-нибудь еще. Присущую жизни «изобретательность» нельзя недооценивать.

Как бы то ни было, представляемые мною аргументы предполагают не только макроскопическую квантовую когерентность. Они предполагают, что биологическая система, называемая человеческим мозгом, каким-то образом ухитрилась воспользоваться в своих интересах физическими феноменами, человеческой же физике неизвестными! Эти феномены когда-нибудь опишет несуществующая пока теория OR, которая свяжет вместе классический и квантовый уровни и, я убежден, заменит временную R-процедуру иной, чрезвычайно тонкой и невычислимой (но все же, несомненно, математической) физической схемой.

То, что физики-люди, по большей части, пока еще ничего не знают о вышеупомянутой несуществующей теории, разумеется, не может заставить Природу отказаться от ее применения в своих биологических построениях. Она пользовалась принципами ньютоновской динамики задолго до Ньютона, электромагнитными феноменами задолго до Максвелла и квантовой механикой задолго до Планка, Эйнштейна, Бора, Гейзенберга, Шрёдингера и Дирака — в течение нескольких миллиардов лет! Лишь по причине свойственной нашему веку нелепой самонадеянности столь многие сегодня пребывают в уверенности, что нам известны все фундаментальные принципы, лежащие в основе каких угодно тонких биологических процессов. Когда какой-нибудь живой организм по счастливой случайности натыкается на такой тонкий процесс, он начинает его активно применять и, возможно, получает в результате некие преимущества перед своими менее удачливыми соседями. Тогда Природа благословляет этот организм вместе со всеми его потомками и позволяет новому тонкому физическому процессу сохраниться в последующих поколениях — посредством, например, такого мощного инструмента, как естественный отбор.

Когда появились первые эукариотические клетки-животные, они, должно быть, обнаружили, что наличие у них примитивных микротрубочек дает им огромные преимущества. В результате возникло (посредством тех самых процессов, о которых мы здесь говорим) некое организующее воздействие, которое, возможно, привело к развитию зачатков способности к своего рода целенаправленному поведению, что помогло им выжить и вытеснить лишенных микротрубочек конкурентов. Называть такое воздействие «разумом», конечно же, еще рано; и все же оно возникло, как я полагаю, благодаря некоему тонкому пограничному взаимодействию между квантовыми и классическими процессами. Тонкостью же своей это взаимодействие обязано хитроумному физическому процессу OR — по-прежнему в подробностях нам неизвестному, — который в условиях не столь тонкой организации принимает вид того грубого квантовомеханического R-процесса, которым мы пока за неимением лучшего пользуемся. Далекие потомки тех клеток-животных — нынешние парамеции и амебы, а также муравьи, лягушки, цветы, деревья и люди — сохранили преимущества, которыми этот хитроумный процесс одарил древних эукариотов, и добавили новые, отвечающие новым многочисленным и самым разнообразным целям. Только будучи наложен на высокоразвитую нервную систему, этот процесс оказался, наконец, в состоянии реализовать свой гигантский потенциал — дав начало тому, что мы, теперь уже с полным правом, называем «разумом».

Итак, мы допускаем, что в глобальной квантовой когерентности может участвовать вся совокупность микротрубочек в цитоскелетах большого семейства нейронов мозга — или, по крайней мере, что между состояниями различных микротрубочек в мозге наличествует достаточная квантовая сцепленность, — т.е. полностью классическое описание коллективного поведения этих микротрубочек невозможно. Можно представить, что в микротрубочках возникают сложные «квантовые колебания» — там, где изоляции, обеспечиваемой самими трубками, достаточно для того, чтобы квантовая когерентность сохранялась хотя бы частично. Велик соблазн предположить, что «клеточноавтоматные» вычисления, которые, по мнению Хамероффа и его коллег, должны выполняться на поверхности трубок, могут оказаться связанными с предполагаемыми квантовыми колебаниями внутри трубок (например, теми, что описаны в [79] или в [213]).

Заметим в этой связи, что частота, предсказанная Фрёлихом для коллективных квантовых колебаний (и подтвержденная наблюдениями Грундлера и Кайльмана [177]) — порядка 5 × 1010 Гц (т.е. 5 × 1010 колебаний в секунду), — практически совпадает с частотой, с которой, по Хамероффу, димеры тубулина в мнкротрубочковых клеточных автоматах «переключаются» из одного состояния в другое. Таким образом, если внутри микротрубочек и в самом деле работает фрёлихов механизм, то следует признать, что какая-то связь между этими двумя типами активности действительно имеется[56].

Впрочем, если бы такая связь была слишком сильной, то квантовый характер внутренних колебаний неизбежно означал бы, что и вычисления на поверхности самих трубок необходимо рассматривать квантовомеханически. Иначе говоря, на поверхности микротрубочек происходили бы самые настоящие квантовые вычисления (см. §7.3)! Следует ли воспринимать такую возможность всерьез?

Трудность заключается в том, что для таких вычислений, по-видимому, необходимо, чтобы изменения конформаций димеров не возмущали сколько-нибудь заметным образом молекулы окружения. Здесь уместно вспомнить о том, что окружающая микротрубочку область заполнена водой в упорядоченном состоянии, прочие же вещества в эту область не допускаются (см. [183], с. 172), что в совокупности может обеспечить некоторое квантовое экранирование. С другой стороны, микротрубочки соединены друг с другом «мостиками» MAP (см. §7.4) — причем по некоторым из них производится транспорт разных «посторонних» молекул, — и передача сигналов вдоль трубок (см. [183], с. 122) не может на эти мостики не воздействовать. Из этого последнего факта вполне недвусмысленно следует, что «вычисления», которыми занята трубка, могут и в самом деле возмутить окружение до такой степени, что их поневоле придется рассматривать классически. Интенсивность возмущения невелика ввиду малости перемещаемых

Добавить отзыв
ВСЕ ОТЗЫВЫ О КНИГЕ В ИЗБРАННОЕ

0

Вы можете отметить интересные вам фрагменты текста, которые будут доступны по уникальной ссылке в адресной строке браузера.

Отметить Добавить цитату