случится нажать первой кнопку, противоположную моей, — т.е. состояние его атома | L↑↓↓〉. Более того, если при нажатии первой кнопки мой звонок не зазвенит, то не зазвенит и его звонок при нажатии противоположной кнопки.

Теперь необходимо убедиться, что при таких примитивных «кнопочных» измерениях действительно выполняются гарантируемые «Квинтэссенциальными Товарами» свойства (а) и (б). В Приложении C приведены некоторые математические подробности предложенного Майораной описания спиновых состоянии (в частности, для спина 3/2), вполне достаточные для какого угодно доказательства. Для упрощения рассуждений представим себе, что сфера Римана проходит через все вершины рассматриваемого додекаэдра, т.е. описывает додекаэдр. Отметим далее, что в описании Майораны ДА-состояние для нажатия кнопки в некоторой вершине P додекаэдра включает в себя дважды саму точку P, а также точку P*, антиподальную P, — что и в самом деле соответствует состоянию |R↓↑↑〉, если точка P находится на северном полюсе додекаэдра. Иначе говоря, это ДА-состояние мы можем обозначить через |P*PP〉.

Ключевым свойством спина 3/2 является то, что ДА-состояния для примитивных измерений, соответствующих нажатиям на кнопки при двух «следующих соседних» вершинах, ортогональны. В чем тут причина? Покажем, что майорановы состояния |A*AA〉 и |C*CC〉 действительно ортогональны для любых следующих соседних вершин A и C додекаэдра. Как видно из рис. 5.28, следующими соседними являются вершины додекаэдра, совпадающие с соседними вершинами куба, вписанного в додекаэдр и имеющего с ним общие центр и восемь вершин. Согласно Приложению C, состояния |A*AA〉 и |C*CC〉 ортогональны, если вершины A и C являются соседними вершинами куба, так что свойство можно считать доказанным.

Рис. 5.28. Внутрь правильного додекаэдра можно поместить куб, который будет иметь общие с додекаэдром центр и восемь (из двадцати) вершин. Отметим, что соседние вершины куба являются следующими соседними вершинами додекаэдра.

О чем это нам говорит? В частности, о том, что нажатия кнопок при трех вершинах додекаэдра, соседних с ВЫБРАННОЙ вершиной представляют собой коммутирующие измерения (§5.14), поскольку по отношению друг к другу эти вершины являются следующими соседними. Таким образом, порядок, в котором я буду на них нажимать, никак не повлияет на исход дела. Не имеет никакого значения и то, в каком порядке будет нажимать на кнопки своего додекаэдра мой коллега на альфе Центавра. Если его ВЫБРАННОЙ вершиной является вершина, противоположная моей, то противоположны моим и три коммутирующие кнопки его додекаэдра. Согласно всему вышесказанному, мой и его звонки должны зазвенеть при нажатии нами на противоположные кнопки независимо оттого, в каком порядке каждый из нас нажимает на кнопки своего додекаэдра, — либо ни мой, ни его звонок не зазвенит вообще. Свойство (а) доказано.

Перейдем к свойству (б). Отметим, что гильбертово пространство для спина 3/2 четырехмерно, так что три взаимно ортогональных возможных нажатия, при которых звонок мог бы зазвенеть — скажем, те, которым соответствуют состояния |A*AA〉, | C*CC〉 и |G*GG〉 (в качестве ВЫБРАННОЙ возьмем вершину B), — не вполне исчерпывают всех возможных альтернативных исходов. Остается еще вариант, когда не «звенит» ни одна их этих кнопок, в результате чего мы имеем нулевое измерение (все три кнопки были нажаты, а звонок не прозвенел), т.е. перед нами еще одно состояние (уникальное), ортогональное остальным трем (|A*AA〉, | C*CC〉, |G*GG〉). Обозначим это состояние через |RST〉, где R, S и T — точки на сфере Римана, необходимые для описания состояния по Майоране. Установить действительное расположение этих трех точек — задача далеко не тривиальная (но вполне решаемая, см. [395]). Впрочем, в настоящий момент нам абсолютно неважно, где именно они располагаются. Достаточно знать, что они где-то на сфере Римана и что их расположение определяется геометрией додекаэдра относительно ВЫБРАННОЙ вершины В. Так, в частности (благодаря симметричности додекаэдра), возьми я в качестве ВЫБРАННОЙ вместо B антиподальную ей вершину B*, тогда результатом отсутствия звонка при нажатии всех кнопок при соседних с B* вершинах A*, C* и G* стало бы состояние |R*S*T*〉, где R*, S* и T* — точки, антиподальные точкам R, S и T.

Рис. 5.29. Обозначение вершин додекаэдра, используемое в §5.18 и Приложении B

Предположим теперь, что мой коллега ВЫБИРАЕТ на своем додекаэдре вершину B, в точности соответствующую той вершине B, что ВЫБРАЛ на своем додекаэдре я. Если при этом его звонок не звенит при нажатии любой из трех его кнопок при вершинах A, C и G, соседних с B, то его измерения (коммутирующие) неизбежно вынуждают мой атом перейти в состояние, ортогональное трем состояниям, соответствующим нажатиям на кнопки при противоположных вершинах A*, C* и G* моего додекаэдра, т.е. в состояние |R*S*T*〉. Если же мой звонок также не звенит, когда я нажимаю на кнопки при вершинах A, C и G моего додекаэдра, то мой атом должен находиться в состоянии |RST〉. Однако, согласно свойству C.1 из Приложения C, состояние |RST〉 ортогонально состоянию |R*S*T*〉; следовательно, невозможно нажать все шесть кнопок без того, чтобы не зазвенел звонок, т.е. свойство (б) также можно считать доказанным.

Вышесказанное объясняет, каким образом «Квинтэссенциальным Товарам» удается, используя феномен квантовой сцепленности, гарантировать наличие у додекаэдров свойств (а) и (б). Как было показано в §5.3, если бы наши додекаэдры вели себя как независимые объекты, из этого немедленно воспоследовали бы «раскрасочные» свойства (в), (г) и (д), что, в свою очередь, привело бы к неразрешимой проблеме раскрашиваемости вершин (каковая неразрешимость явно продемонстрирована в Приложении B). Таким образом, то, чего ухитрились добиться с помощью квантовой сцепленности «Квинтэссенциальные Товары», было бы просто-напросто невозможно, окажись магические додекаэдры по выходе за ворота фабрики «Квинтэссенциальных Товаров» действительно независимыми объектами, никак не связанными между собой. Квантовая сцепленность — это не просто досадная морока, не позволяющая нам с легким сердцем игнорировать вероятностные эффекты внешнего окружения на физическую ситуацию. Когда ее влияние удается должным образом обособить, перед нами возникает феномен, точно описываемый математически и зачастую обладающий четкой геометрической организацией.

Предсказания квантовомеханического формализма нельзя описать в терминах объектов, рассматриваемых отдельно один от другого. Феномены квантовой сцепленности невозможно, в общем случае, объяснить рассуждениями «бертлмано-носочного» типа. Следуя правилам стандартной квантовомеханической эволюции — нашей процедуры U, — мы приходим к заключению, что «сцепленные» этим диковинным образом объекты остаются сцепленными вне зависимости от того, на какое расстояние им случится удалиться друг от друга. Сцепленность эту может разрушить только процедура R. Однако «реальна» ли процедура R? Если нет, то сцепленность никуда не исчезает, она остается навечно, пусть и скрытая от наших глаз чрезвычайной сложностью реального мира.

Означает ли это, что всё во Вселенной сцеплено со всем? Как уже было отмечено ранее (см. §5.17), феномен квантовой сцепленности не похож на феномены, рассматриваемые классической физикой, где интенсивность действия неминуемо убывает на расстоянии,

Добавить отзыв
ВСЕ ОТЗЫВЫ О КНИГЕ В ИЗБРАННОЕ

0

Вы можете отметить интересные вам фрагменты текста, которые будут доступны по уникальной ссылке в адресной строке браузера.

Отметить Добавить цитату