кроме того, мы выяснили, что сегодня он остановил свой выбор, скажем, на зеленом и розовом, — то наблюдение, устанавливающее, что левый носок доктора зеленый (состояние |
Проиллюстрируем сказанное примером. Предположим, что начальное состояние | Ω0〉 описывает спиновое состояние некоторой частицы как спин 0. Частица затем распадается на две новые частицы (каждая со спином 1/2), которые разлетаются в разные стороны (скажем, влево и вправо), удаляясь на значительное расстояние друг от друга. Из свойств кинетического момента и из закона его сохранения следует, что спины образовавшихся при распаде частиц должны быть ориентированы в противоположном направлении; таким образом, состояние нулевого спина, в которое эволюционирует |Ω0〉, имеет вид
|Ω〉 = |L↑〉| R↓〉 - |L↓〉| R↑〉,
где «L» обозначает частицу, движущуюся влево, a «R» — частицу, движущуюся вправо (знак «минус» появляется согласно стандартному правилу). Допустим, мы решаем провести измерение спина левой частицы на предмет направленности его оси «вверх». Тогда ответ ДА (т.е. обнаружение состояния |L↑〉) автоматически поместит правую частицу в состояние |R↓〉 («спин вниз»). Ответ НЕТ (|L↓〉) автоматически помещает правую частицу в состояние «спин вверх» (|R↑〉). Похоже, что измерение частицы «здесь» способно мгновенно повлиять на состояние частицы «там» (причем это «там» может быть очень далеко отсюда) — что, впрочем, ничуть не более удивительно, чем все те же «бертлмановские носки»!
Однако это сцепленное состояние можно представить и иначе, для этого нужно всего лишь выполнить другое измерение. Например, мы могли бы выбрать при измерении спина левой частицы другое направление — не вертикальное, а
|Ω〉 = |L←〉| R→〉 - |L→〉| R←〉.
Таким образом, ответ ДА при измерении левой частицы автоматически помещает правую частицу в состояние |R→〉, а ответ НЕТ — в состояние |R←〉.
Что в подобного рода ситуациях замечательно, так это то, что простой
Согласно стандартному квантовомеханическому формализму все, действительно, так и выглядит: немедленно по выполнении измерения, скажем, левой частицы происходит редукция полного состояния системы — из начального сцепленного состояния (где ни одна частица
Согласно принципам теории относительности, физические сигналы (т.е. все, что способно передавать реальную информацию) неизбежно ограничены в своем распространении скоростью света: они могут распространяться медленнее, но быстрее — никогда. Однако для ЭПР-эффектов такое рассмотрение не годится. Представление об ЭПР-эффектах как о конечных сигналах, распространение которых ограничено скоростью света, противоречит всем предсказаниям квантовой теории. (Это обстоятельство хорошо иллюстрируется примером с магическими додекаэдрами — сцепленность между моим додекаэдром и додекаэдром моего коллеги гарантирует их мгновенное взаимодействие, и нет необходимости ждать четыре года, которые затратит на преодоления расстояние между нами световой сигнал; см. §§5.3, 5.4, а также примечание {65} .) Следовательно, ЭПР-эффекты не могут быть сигналами в обычном смысле этого слова.
Как же в таком случае объяснить тот факт, что ЭПР-эффекты способны-таки повлечь за собой вполне наблюдаемые последствия? То, что они способны, следует, например, из знаменитой теоремы Джона Белла (см. §5.4). Совместные вероятности, предсказываемые квантовой теорией для различных возможных измерений состояния двух частиц со спином 1/2 (с независимым выбором направления оси спина левой и правой частицы), невозможно получить ни в какой классической модели несообщающихся левого и правого объектов. (Такого рода примеры описаны и в НРК, с. 284—285 и 301.) Магические додекаэдры из §5.3 дают еще более сильный эффект — здесь речь идет уже не просто о вероятностях, но о вполне точных «да/нет»-ограничениях. Таким образом, хотя левая и правая частицы не
Квантовая сцепленность не обращает никакого внимания не только на разделенность в пространстве, но и на разделенность во времени. Если измерение одного из компонентов ЭПР-пары выполнено