Отметим, что свойство это очень похоже на свойство линейности эволюции U (см. §5.7), согласно которому результат эволюции суперпозиции состояний в точности совпадает с суперпозицией результатов эволюции отдельных состояний. Состояние |α〉 + |β〉, например, эволюционируете |α'〉 + | β'〉. Тем не менее, речь в обоих случаях идет о совершенно разных вещах, и очень важно об этой разнице не забывать. Нет ничего удивительного в том, что система, составленная из невзаимодействующих независимых компонентов, эволюционирует — как целое — так, словно ни один из ее отдельных компонентов понятия не имеет о присутствии в системе остальных. Независимость компонентов (т.е. полное отсутствие каких бы то ни было взаимодействий между ними) в данном случае — существенное условие, иначе свойство не «работает». Свойство линейности же оказывается поистине неожиданным. Получается, что под действием U системы-суперпозиции состояний эволюционируют как набор отдельных, полностью изолированных друг от друга состояний независимо от того, изолированы эти состояния в действительности или между ними существуют какие-то взаимодействия. Одного этого достаточно, чтобы усомниться в абсолютной справедливости свойства линейности. И все же эволюция U линейна (и тому есть многочисленные подтверждения), но лишь в отношении феноменов, целиком и полностью ограниченных квантовым уровнем. Нарушение же линейности происходит, по всей видимости, исключительно под действием процедуры R. К этому вопросу мы еще вернемся.
5.16. Ортогональность произведений состояний
С ортогональностью произведений состояний (в том виде, в каком я определил эти произведения выше) дела обстоят не так просто, как хотелось бы. Допустим, у нас имеется два ортогональных состояния |α〉 и |β〉; тогда мы вправе ожидать, что состояния |ψ〉| α〉 и |ψ〉| β〉 также будут ортогональными, причем при любом | ψ〉. Пусть, например, |α〉 и | β〉 — возможные альтернативные состояния фотона, где | α〉 — состояние фотона, зарегистрированного неким фотоэлементом, а ортогональное |α〉 состояние |β〉 — предполагаемое состояние фотона в случае, когда фотоэлемент не регистрирует ничего (нулевое измерение). Можно представить себе, что наш фотон является компонентом некоей совокупной системы — просто добавим к нему еще какой-нибудь объект (например, другой фотон, скажем, где-нибудь на Луне) и обозначим состояние этого другого объекта через | ψ〉. Таким образом, для нашей совокупной системы возможны два альтернативных состояния — |ψ〉| α〉 и |ψ〉| β〉. Простое добавление состояния | ψ〉 в имеющееся описание не должно, разумеется, оказать никакого влияния на ортогональность двух первоначальных состояний. В самом деле, если говорить об определении произведения состояний в терминах обычного «тензорного произведения» (или необычного — в данном случае, грассманова произведения, а точнее, некоторой его модификации, используемой в наших рассуждениях), то так оно и есть, и из ортогональности состояний | α〉 и |β〉 действительно следует ортогональность |ψ〉|α〉 и | ψ〉|β〉.
Как бы то ни было, пути, которыми, похоже (согласно
последним данным квантовой теории), предпочитает следовать Вселенная, далеко не столь прямолинейны. Если бы состояние |ψ〉 можно было счесть полностью независимым и от |α〉, и от |β〉, то тогда его присутствие и в самом деле ничего бы не меняло. Однако формально полной независимости здесь быть не может, и состояние даже пребывающего на Луне фотона оказывает самое непосредственное воздействие на состояние фотона, регистрируемого нашим фотоэлементом [40]. (С этими формальностями связано, в частности, то, что под обозначением «| ψ〉|α〉» мы подразумеваем произведение грассманова типа — если использовать более привычные термины, то речь тут идет о так называемой «статистике Бозе» (описание состояний фотонов и прочих бозонов) или о «статистике Ферми» (описание состояний фермионов — электронов, протонов и т.д.), см. НРК, с. 277, 278 и, скажем, [94].) Если бы перед нами стояла задача получить абсолютно точный с точки зрения теории результат, то рассмотрение состояния одного-единственного фотона потребовало бы учета состояний всех фотонов во Вселенной. Впрочем, необходимости в этом (к счастью) нет — и без такого учета точность получаемых результатов хоть и не абсолютна, но все же чрезвычайно высока. Если состояния | α〉 и |β〉 ортогональны, то можно с очень высокой степенью точности предположить, что ортогональными будут и состояния | ψ〉|α〉 и | ψ〉|β〉 (даже если это произведения грассманова типа), где |ψ〉 — любое состояние, не имеющее очевидного отношения к рассматриваемой задаче (каковая задача непосредственно касается лишь ортогональных состояний |α〉 и | β〉). Так и предположим.
5.17. Квантовая сцепленность
Для того чтобы двигаться дальше, нам не обойтись без понимания квантовой физики ЭПР-эффектов — квантовомеханических Z-загадок, ярким представителем которых является представленная мною выше задача о магических додекаэдрах (см. §§5.3, 5.4). Кроме того, мы должны как-то разобраться с главной X-загадкой квантовой теории — парадоксальной взаимозависимостью между процессами эволюции U и редукции R, загадкой, порождающей проблему измерения, о которой мы поговорим в следующей главе. Следовательно, настала пора ввести очередную фундаментальную квантовую идею — понятие о сцепленных состояниях.
Начнем с того, что попытаемся выяснить, что включает в себя простой процесс измерения. Рассмотрим следующую ситуацию: фотон находится в суперпозиции, скажем, | α〉 + |β〉, где в состоянии | α〉 фотон активирует детектор, в состоянии же | β〉, ортогональном |α〉, фотон никакого воздействия на детектор не оказывает. (Похожий пример рассматривался в §5.8, когда на детектор, расположенный в точке G, падал фотон, пребывающий в состоянии —|F〉 - i| G〉. В состоянии |G〉 фотон активировал детектор, в состоянии |F〉 никакого воздействия на детектор не происходило.) Предположим