локально в каждой точке траектории внешняя электромагнитная сила полностью скомпенсирована силой инерции. В результате такой заряд в каждой точке криволинейной траектории будет локально двигаться инерциально, т.е. равномерно и прямолинейно без вращения. Более того, из-за инерциальности движения в каждой точке траектории заряд не будет излучать электромагнитных волн как локально, так и вдоль всей криволинейной траектории, несмотря на то, что его движение является ускоренным!
Рис. 6. Переход электрона со стационарного уровня 1 на стационарный уровень 2. На уровнях 1 и 2 электромагнитная сила Fe скомпенсирована силой инерции Fi. Электромагнитное излучение появляется, когда [Fe] > [Fi].
Этот парадоксальный с первого взгляда вывод имеет, тем не менее, экспериментальное подтверждение. Действительно, из анализа атомных спектров следует, что при движении электрона вокруг ядра у электрона существуют устойчивые орбиты, по которым электрон движется ускоренно, но без излучения. Наблюдаемая устойчивость атомных орбит электрона была возведена Н. Бором в ранг физического принципа при построении квантовой теории атома. Под давлением экспериментальных данных ученый вводит постулат стационарности электронных орбит в атоме. Постулат Бора становится лишним, если связать с электроном в атоме ускоренную локально инерциальную систему отсчета первого рода
Рис. 7. Электрон - е движется по стационарной орбите вокруг ядра атома с зарядом +е. На левом рисунке наблюдатель видит движение электрона под действием внешней силы Fе На правом рисунке наблюдатель обнаружит в локально инерциальной системе прямолинейное и равномерное движение электрона.
На
Она порождена электромагнитным полем ядра. Используя преобразования координат, наблюдатель может переместиться в ускоренную систему отсчета
Из наших рассуждений можно прийти к выводу, что в геометризированной электродинамике возможно ускоренное движение по «инерции». Для этого заряженной частице достаточно двигаться согласно уравнениям геодезических пространства Римана. Причем это пространство должно быть образовано множеством относительных координат ускоренных локально инерциальных систем отсчета, связанных с зарядами. Поэтому в геометризированной электродинамике существование стационарных орбит электронов в поле ядра (квантовый принцип Бора) есть следствие ускоренного движения зарядов по инерции.
Этот вывод подтверждает догадки А. Эйнштейна о возможности найти более совершенную квантовую теорию путем расширения принципа относительности. В самом деле, появление стационарных орбит у электрона в геометризированной электродинамике обеспечено расширением специального принципа относительности электродинамики Максвелла-Лоренца-Эйнштейна до общего принципа относительности.
1.9. Вращательная относительность и вращательные координаты.
В повседневной жизни мы наблюдаем два типа движений тел - поступательные и вращательные. Например, автомобиль, который движется по горизонтальной поверхности, движется поступательно. Движение колес автомобиля относительно его корпуса является вращательным. Поступательное движение тел описывается в физике
Механика Ньютона, электродинамика Максвелла-Лоренца-Эйнштейна, теория гравитации Эйнштейна и геометризированная электродинамика построены так, что используемые этими теориями системы отсчета образуют множество относительных поступательных координат (см.
Таблица № 1.
Легко видеть, что в эту таблицу не входят вращательные координаты ф1, ф2, ф3. Это и понятно, поскольку все перечисленные в таблице системы отсчета по определению не вращаются. Поэтому можно сказать, что до сих пор теория относительности развивалась как
Следующий шаг в развитии теории относительности потребовал введения многообразия относительных координат ускоренных систем отсчета, которые испытывают вращение при своем движении. Такие системы отсчета движутся не только в трансляционных координатах, но также и во вращательных. Теория, в которой используются вращательные координаты, требует увеличения размерности пространства событий. Например, если рассматриваются трехмерные вращающиеся системы отсчета с трансляционными координатами х, у и z, то они дополнительно описываются тремя вращательными координатами. В этом