соответствует кратчайшему расстоянию между двумя точками в данной геометрии. В геометрии Евклида геодезической (в дальнейшем слово
1.3. Четырехмерное пространство событий и относительность времени.
Пространство событий инерциальных систем отсчета механики Ньютона трехмерно и использует три пространственных координаты х, у и z. При движении систем отсчета эти координаты зависят от времени t, которое выступает в механике Ньютона как
При таких скоростях материи (или близких к ним, но меньших чем
Из анализа уравнений релятивистской механики (т.е. механики больших скоростей) вытекают удивительные следствия.
Во-первых, покоящееся тело отсчета обладает энергией покоя, равной произведению массы покоя m на квадрат скорости света: Е
Во-вторых, масса тела зависит от скорости движения и стремится к бесконечно большой величине при приближении скорости тела к скорости света.
В третьих, всякое ускоренное поступательное движение в четырехмерном пространстве представляется как
Рис.3. Плоскость ct-x, на которой изображены направляющие светового конуса будущего (t>0). Нерелятивисткая скорость движения вдоль оси Х вычисляется из прямоугольного треугольника через тангенс угла по следующей формуле v = x/t = ctg
Из рисунка видно, что скорость движения v = x/t вдоль оси х определяется через тангенс угла
В четвертых, длина L0 любого объекта зависит от скорости и уменьшается с увеличением его скорости. При скорости v = с длина вдоль направления движения обращается в ноль. Например, наблюдатель, который следит за движущимся с большой скоростью шаром, увидит вместо круглого шара сплюснутый в направлении движения диск.
В пятых, время в четырехмерном пространстве становится величиной
Этот странный с житейской точки зрения вывод был неоднократно проверен экспериментально. Были измерены времена жизни неустойчивых (распадающихся на части) элементарных частиц в зависимости от скорости их движения. Оказалось, что чем ближе скорость частицы к скорости света, тем больше времени она живет.
Подобно плоской геометрии Евклида, псевдоевклидова геометрия приводит к тривиальным уравнениям движения тел отсчета (вспомним, что это уравнения движения свободных тел) и, соответственно, к отсутствию каких-либо уравнений поля. Можно сказать, что псевдоевклидова геометрия представляет собой четырехмерную модель «абсолютного вакуума». Эта модель соответствует реальности в пределе, когда массы тел отсчета стремятся к нулю.
1.4. Относительность сил и полей в теории гравитации Эйнштейна.
До сих пор мы рассматривали пространство событий инерциальных систем отсчета. Сначала это были инерциальные системе механики Ньютона, которые движутся прямолинейно и равномерно без вращения относительно друг друга.
Пространство событий таких систем отсчета трехмерно и обладает геометрией Евклида. Затем, мы рассмотрели пространство событий инерциальных систем отсчета, которые движутся со скоростями, близкими к скорости света. В этом случае геометрия пространства событий оказалась четырехмерной, псевдоевклидовой. Обе эти геометрии описывают пустоту или абсолютный вакуум, где нет никакой материи или вообще чего-либо.
Перейдем теперь к описанию ускоренных систем отсчета, в частности к локально инерциальным системам без вращения. Что это за системы отсчета?
Представим себе космический корабль, который движется вокруг Земли по стационарной орбите без собственного вращения. В корабле находится космонавт в состоянии невесомости