движется ускоренно (вместе с кораблем) под действием гравитационной силы.

Рис. 4. Ускоренная система отсчета В, связана с космическим кораблем. Корабль совершает свободный полет на стационарной орбите и движется без собственного вращения. Система отсчета А находится на Земле. Наблюдатели А и В измеряют координаты до космонавта, находясь каждый в своей системе отсчета, и получают разные уравнения движения космонавта.

Предположим теперь, что на корабле находится наблюдатель В и измеряет координаты космонавта относительно системы отсчета, связанной с космическим кораблем. Он заметит, что внутри корабля космонавт либо покоится относительно стенок корабля, либо будет двигаться прямолинейно и равномерно, так, как будто никакие силы на космонавта не действуют. На самом же деле на космонавта действуют две силы, которые компенсируют друг друга. Одна из них все та же гравитационная сила Fg, а другая Fi - сила инерции (см. рис. 4). Физикам известно, что в ускоренных системах отсчета действуют силы инерции. Например, когда вы катаетесь на карусели, на вас действует центробежная сила инерции, которая пытается сбросить вас с карусели. Вращение представляет собой ускоренное движение.

Теперь понятно, как определить ускоренную локально инерциальную систему отсчета первого рода. Это такая ускоренная система, в которой внешняя сила, действующая на тело отсчета, скомпенсирована силой инерции. В нашем случае внешней силой оказалась гравитационная сила Fg. Именно такие системы отсчета использовал А. Эйнштейн при построении теории гравитационного поля.

Итак, мы показали, что в теории Эйнштейна гравитационные поля и силы носят относительный характер, поскольку могут быть обращены в нуль (правда, только локально) путем перехода в ускоренную локально инерциальную систему отсчета. Далее, А. Эйнштейну удалось установить, что относительные координаты ускоренных локально инерциальных систем образуют пространство событий, наделенное геометрией Римана. В отличие от плоской геометрии Евклида (или плоской псевдоевклидовой геометрии) эта геометрия обладает кривизной. Оказалось, что кривизна геометрии Римана содержит всю необходимую информацию о гравитационных полях и взаимодействиях. Вспомним теперь высказывания Клиффорда о том, что в мире ничего не происходит, кроме изменения кривизны пространства. А. Эйнштейну удалось показать это для гравитационных взаимодействий!

Рис. 5. Отклонение луча света вблизи поверхности Солнца.

Используя математические знания о различных геометрических объектах геометрии Римана, можно заранее предсказать результат любого гравитационного эксперимента. Например, уравнения движения тела отсчета, с которым связана ускоренная локально инерциальная система, в теории гравитации Эйнштейна описывается уравнениями геодезических. Эти уравнения были известны математикам задолго до теории Эйнштейна. Великий ученый использовал эти уравнения для теоретических расчетов, заранее зная, что теоретические выводы будут подтверждены экспериментом. Он предсказал, что луч света от далекой звезды, проходящий вблизи Солнца, будет искривляться под действием гравитационного поля (см. рис.5).

В последствии эксперименты, проведенные астрономами, количественно подтвердили предсказанный А. Эйнштейном угол отклонения луча. Были и другие предсказания теории, получившие количественные подтверждение на опыте. 

1.5. Вакуум Эйнштейна.

После многолетних поисков А. Эйнштейн после дискуссии с немецким математиком Д. Гильбертом находит в 1915 году знаменитые уравнения Эйнштейна, которые описывают гравитационные поля через кривизну пространства событий. Согласно этим уравнениям, массивное тело искривляет пространство- время вокруг себя. В его теории имеется две реальности: пространство-время и материя. Материя выступает на фоне пространства-времени, искривляя его. Если материю убрать, что пространство становится плоским (псевдоевклидовым). Таким образом, пространство-время наделяется упругими свойствами, которые проявляются через искривление его геометрии. Наглядно смоделировать физический процесс отклонения луча света, показанный на рис. 5, можно следующим образом. Представим себе область трехмерного пространства, заполненного прозрачной однородной резиной. Пропуская луч света по различным направлениям внутри резины, мы увидим, что он распространяется всегда по прямой линии. Это модель плоского пространства или «абсолютного вакуума».

Поместим внутрь резины шарик из какого-либо твердого материала. В результате вблизи поверхности шарика возникнут неоднородности из-за вытеснения шариком части объема резины. Если теперь пропустить луч света вблизи поверхности шарика, то он будет распространяется по некоторой кривой из-за неоднородной плотности вблизи поверхности. В данном случае неоднородный кусок прозрачной резины моделирует искривленное пространство или возбужденный вакуум.

Можно теперь утверждать, что согласно теории Эйнштейна физический вакуум это пустое (без материи) пространство-время, обладающее упругими свойствами. Эти свойства проявляются тогда, когда в пустое пространство помещается некая масса. Более того, в теории имеются так называемые вакуумные уравнения Эйнштейна, которые описывают гравитационные поля вне материи, т.е. в чистом виде упругие свойства пустого пространства-времени. Вакуумные уравнения Эйнштейна являются чисто геометрическими и не содержат никаких физических констант. Это так и должно быть, поскольку вакуум не может характеризоваться чем-либо конкретным. Если вакуум наделить какими- нибудь конкретными физическими константами, то это будет уже что-то рожденное из вакуума.

1.6. Вакуум Дирака.

Обратим внимание на очень важный момент. При построении теории гравитации А. Эйнштейн не был ориентирован на эксперимент. Вся содержательная часть теории связана с геометрическими свойствами пространства событий относительных координат ускоренных локально инерциальных систем отсчета первого рода. Достаточно знать, что пространство событий таких систем наделено структурой геометрии Римана, как уже из этого факта следуют уравнения движения массы в произвольном гравитационном поле - уравнения геодезических! Теории такого класса можно назвать дедуктивными.

Большинство физических теорий строится на основе обобщения экспериментальных данных частного характера. Такие теории относятся к классу индуктивных. Примером индуктивной теории является механика Ньютона, термодинамика, электродинамика, квантовая механика и ее наиболее развитая часть - квантовая электродинамика. На сегодняшний день квантовая электродинамика, основателем которой по праву считается П. Дирак, являет собой пример наиболее разработанной физической теории. Теоретические выводы, следующие из ее уравнений, совпадают с результатами опыта с высокой степенью точности (с точностью до величин порядка 10-7). Тем не менее, не опыт является истиной. Это всего лишь критерий истины. Дело в том, что анализ уравнений

Добавить отзыв
ВСЕ ОТЗЫВЫ О КНИГЕ В ИЗБРАННОЕ

0

Вы можете отметить интересные вам фрагменты текста, которые будут доступны по уникальной ссылке в адресной строке браузера.

Отметить Добавить цитату