4. Расстояние между скрещивающимися ребрами (16 мм).

На рис. 12.42 со знаком «*» указан также зависимый параметр — высота пирамиды, построенной по двум заданным параметрам.

Пример 12.8

Условие. Создать 3D-модель правильной треугольной пирамиды с параметрами из варианта 1 на рис. 12.42.

Решение. Для создания модели:

1. Выполните команды Файл | Создать | Деталь. В Дереве модели укажите Плоскость ZX.

2. Нажмите кнопку Эскиз на панели Текущее состояние:

3. В появившейся Компактной панели нажмите кнопку переключения Геометрия для вызова соответствующей Инструментальной панели:

-

Выберите команду Непрерывный ввод объектов:

Постройте в эскизе 1 прямоугольный треугольник (для начальных построений в эскизе стиль Основная не использовать). На панели Параметризация выберите команду Вертикальность (рис. 12.43, а) и укажите отрезок, который не должен изменять свое положение при изменении геометрии эскиза 1. Нанесите в эскизе два размера (рис. 12.43, б).

4. На панели Глобальные привязки включите привязку Середина. Используя эту привязку и выбрав команду Окружность, постройте окружность с центром в начале координат и с диаметром, определенным положением середины вертикального катета (рис. 12.44, а). Вертикальный отрезок продолжите до пересечения с нижней частью построенной окружности (рис. 12, 44, б). На панели Геометрия:

выберите команду Точка:

Укажите точку пересечения гипотенузы и горизонтального катета (рис. 12.44, б).

Установите стиль вертикального отрезка: Основная. Завершите эскиз повторным нажатием кнопки Эскиз:

5. В Дереве модели укажите Плоскость XY. Нажмите кнопку Эскиз:

6. В эскизе 2 выполните команды Операции | Спроецировать объект и укажите отрезок из эскиза 1. Измените стиль линии спроецированного отрезка. Выберите команду Многоугольник:

Постройте треугольник с известным центром и привязкой к концам спроецированного в эскиз отрезка (рис. 12.44, в).

7. Закройте эскиз 2 и повторно откройте эскиз 1. Измените стиль Основная вертикального отрезка на любой другой. Закройте эскиз.

8. Нажмите кнопку Операция по сечениям:

на панели Редактирование детали:

9. В Дереве модели укажите Эскиз: 1 и Эскиз: 2 (рис. 12.45).

Эти названия появятся в списке сечений Панели свойств. Нажмите кнопку Создать объект:

10. После задания Ориентация | Изометрия YZX и включения команды Невидимые линии тонкие на панели Вид получится изображение тетраэдра, показанное на рис. 12.4, а.

12.5. Моделирование многогранников по координатам вершин

В предыдущих разделах рассматривались примеры построения 3D-моделей многогранников, у которых одна из граней или основной формообразующий эскиз (см. пример 12.4) располагается в одной из трех взаимно перпендикулярных плоскостей проекций. Обратимся к примеру создания 3D-модели пирамиды, у которой грани не перпендикулярны плоскостям проекций.

Пример 12.9

Условие. Создать модель пирамиды с координатами вершин A (0, 0, 0); B (-20, 0, 40); C (-40, 10, 20); D (-10, 30, -5).

Решение.

1. Выберите Файл | Создать | Деталь | кнопка OK | Операции | Пространственные кривые | Ломаная.

2. Задайте координаты вершин ломаной (рис. 12.46, а). Ввод параметров заканчивается нажатием кнопки Создать объект:

3. Выберите Операции | Плоскость | Через три вершины. Укажите три вершины. Нажмите кнопку Создать объект:

4. В Дереве модели появится объект Плоскость через три вершины: 1. Укажите его и откройте Эскиз: 1. В эскизе отрезками соедините вершины 1, 2, 3. Закройте эскиз.

5. Повторно выберите Операции | Плоскость | Через три вершины. Укажите вершину 4 и еще две, которые были указаны в эскизе 1. Нажмите кнопку Создать объект:

6. В Дереве модели появится объект Плоскость через три вершины: 2.

Укажите его и откройте Эскиз: 2. Используя команду Точка, укажите в эскизе вершину 4. Возможен другой вариант эскиза 2, когда в нем отрезками соединяются 3 вершины. Закройте эскиз.

7. Нажмите кнопку Операция по сечениям:

на панели Редактирование детали:

8. В Дереве модели укажите Эскиз: 1 и Эскиз: 2. Эти названия

Добавить отзыв
ВСЕ ОТЗЫВЫ О КНИГЕ В ИЗБРАННОЕ

0

Вы можете отметить интересные вам фрагменты текста, которые будут доступны по уникальной ссылке в адресной строке браузера.

Отметить Добавить цитату