но ты сделал потрясающую вещь!» И головоломку, которую случайно решил мальчик, теперь вы обнаружите в любом классическом сборнике.

В руках изобретательного человека головоломки могут возникать почти из ничего — нужна только идея. Монеты, спички, карты, шашки, кусочки проволоки или веревки — все оказывается полезным. Огромное число головоломок возникло из букв алфавита и вот из этих десяти цифр: 1, 2, 3, 4, 5, 6, 7, 8, 9 и 0.

Стоит всегда помнить, что даже самый простой человек способен задать задачу, решить которую смогут лишь мудрецы — если вообще смогут. Одна маленькая девочка задала вопрос: «Может ли Бог сделать все, что захочет?» Получив утвердительный ответ, она тут же не преминула спросить: «А сумеет он сделать такой огромный камень, что сам не сможет его поднять?» Многие широко образованные взрослые люди не найдут здесь сразу удовлетворительного ответа. И все же трудность в данном случае состоит в абсурдной, хотя и хитроумной форме вопроса, который на самом деле следует сформулировать так: «Может ли Всемогущий нарушить свое всемогущество?» Он несколько напоминает другой вопрос: «Что произойдет, если абсолютно движущееся тело столкнется с абсолютно неподвижным телом?» Здесь мы имеем всего лишь противоречие в терминах, ибо если существует абсолютно неподвижное тело, то одновременно не может существовать тело, движение которого нельзя ничем остановить.

Коллега Фарадея, профессор Тиндаль, обычно предлагал детям задавать ему каверзные вопросы, и некоторые из этих вопросов оказывались весьма крепкими орешками. Один ребенок спросил его, почему часть полотенца, смоченная водой, темнее сухой части. Кто из читателей сумеет правильно ответить на этот вопрос? Многие в подобных случаях удовлетворяются весьма неуклюжими ответами. Если вы спросите: «Почему мы видим сквозь стекло?», то девять человек из десяти ответят: «Потому что оно прозрачно», что, разумеется, лишь другая форма ответа: «Потому что мы видим сквозь него».

Головоломки обладают таким бесконечным разнообразием, что их порой очень трудно разделить на классы. Часто характер головоломок бывает настолько слитен, что в лучшем случае мы можем лишь широко очертить несколько их типов. Давайте обратимся к некоторым примерам.

Прежде всего существует старинная головоломка, рассчитанная на игру фантазии и воображения. Читатель помнит, наверное, древнегреческий миф о Сфинксе, пожиравшем жителей Беотии, которые не могли разгадать его загадки. Сфинкс должен был погибнуть, если кто-нибудь правильно ответит на одну из них. И вот Эдип угадал, «какое животное ходит утром на четырех, днем на двух, а вечером на трех ногах». Оказывается, Сфинкс имел в виду человека, который ходит на своих ногах и руках утром своей жизни, на ногах — в течение ее дня, а вечером, на закате жизни, пользуется еще и палкой. Услышав этот ответ, Сфинкс ударился головой о скалу и тут же испустил дух. Как видите, мастера решать головоломки бывают иногда весьма полезны.

Известна головоломка, которую предложил библейский Самсон. Это, кажется, первый письменно зарегистрированный случай, когда за верное решение назначалась награда: «тридцать синдонов (рубашек из тонкого полотна. — Ред.) и тридцать перемен одежд». Вот эта головоломка: «Из ядущего вышло ядомое, и из сильного вышло сладкое». Ответом было: «Рой пчел в трупе львином». Этот тип головоломок дожил до сегодняшнего дня в несколько иной форме: «Для чего цыпленок переходит дорогу?», на что в большинстве своем отвечают: «Чтобы добраться до другой ее стороны», хотя правильным ответом будет: «Чтобы доставить беспокойство шоферу». Он выродился просто в разновидность каламбура. Например, всем нам с детства знаком вопрос: «На поле он стоял и думал: козлу дорога далека. Кому и к чему далека дорога?», правильным ответом на который будет: «Наполеону ко злу» (Наполеон — на поле он, ко злу — козлу).

Существует обширный класс буквенных головоломок, основанный на некоторых особенностях соответствующего языка, таких, как анаграммы, акростихи, кроссворды и шарады. Здесь мы также находим палиндромы, то есть слова и предложения, которые можно с тем же успехом читать задом наперед. Известно, если это вообще может быть известно, что Адам представился Еве следующим «палиндромическим» образом (и, заметьте, на английском языке): «Madam, I’m Adam»[3], на что его супруга ответила скромным палиндромом: «Eve»[4].

Потом идут арифметические головоломки, огромный, полный разнообразия класс: от задач, про которые алгебраист скажет, что они ничего собой не представляют, кроме «обычного уравнения», допуская простое непосредственное решение, до глубочайших проблем из элегантной области теории чисел.

Далее имеются геометрические головоломки, любимой и очень древней ветвью которых служат задачи на разрезание, где требуется разрезать на части некую плоскую фигуру, а затем сложить из этих частей новую фигуру. Большинство головоломок с проволокой, которые продаются на улицах и в магазинах игрушек, относятся к геометрии положения.

Но эти классы отнюдь не охватывают всех разновидностей головоломок, даже если мы отнесем некоторые головоломки сразу к нескольким классам. Существует много искусных механических головоломок, которые вы не сумеете классифицировать, ибо они стоят совсем особняком; существуют головоломки логические, шахматные, шашечные, карточные, использующие домино, любой трюк фокусника тоже представляет собой головоломку, только решение ее фокусник старается сохранить в секрете.

Существуют головоломки, которые просты и кажутся простыми, бывают трудные головоломки, которые кажутся простыми, бывают трудные головоломки, которые и выглядят трудными, и простые головоломки, которые кажутся трудными; а в каждом случае мы можем, разумеется, различать их по степени легкости и трудности. Но ниоткуда не следует, что головоломка, условия которой легко поймет даже малый ребенок, проста сама по себе. Наоборот, такие головоломки выглядят просто для непосвященного, и только отыскание решения их окажется для него весьма трудным делом после того, как он действительно приступит к задаче.

Например, если мы выпишем число, состоящее из девятнадцати единиц, 1 111 111 111 111 111 111, а затем попросим найти число (отличное от него самого и от 1), которое делит его без остатка, то условия задачи окажутся совсем простыми, тогда как сама она ужасно трудна. Никто в мире не знает, существует ли такой делитель данного числа или нет. Если вы найдете хоть один делитель, то тем самым преуспеете в том, чего никто до вас не сумел сделать.

Число, составленное из семнадцати единиц, 11 111 111 111 111 111, обладает лишь двумя делителями — 2 071 723 и 5 363 222 357, а найти их весьма сложно. Единственное число, составленное из единиц, про которое доподлинно известно, что у него нет делителей, — это 11. Такое

Добавить отзыв
ВСЕ ОТЗЫВЫ О КНИГЕ В ИЗБРАННОЕ

0

Вы можете отметить интересные вам фрагменты текста, которые будут доступны по уникальной ссылке в адресной строке браузера.

Отметить Добавить цитату