«коэффициент Шарпа» и «процент прибыльных сделок». Такая схожесть трендов не удивительна, принимая во внимание почти абсолютную скоррелированность значений прибыли и коэффициента Шарпа.

Две другие пары целевых функций (прибыль и максимальная просадка, коэффициент Шарпа и максимальная просадка) также демонстрируют почти одинаковый тренд (причина схожести трендов та же, что и в предыдущем случае). Корреляции для этих двух пар при низких значениях параметра достаточно сильны (напомним, что в случае максимальной просадки отрицательный коэффициент корреляции имеет тот же смысл, что и положительная корреляция). По мере увеличения параметра до средних значений корреляция приближается к нулю, а затем вновь уходит в отрицательную область. Когда мы рассматривали те же данные консолидированно (правый верхний и правый средний графики рис. 2.3.2), то могли обнаружить только обратную зависимость для этих пар целевых функций. Детализированный анализ, представленный на рис. 2.3.3, позволяет установить, что в диапазоне средних значений параметра «период истории для расчета HV» корреляции внутри этих двух пар целевых функций отсутствуют вовсе (и, следовательно, содержащаяся в них информация не дублируется).

Взаимозависимость последней пары целевых функций (максимальная просадка и процент прибыльных сделок) демонстрирует повышательный тренд. При низких значениях параметра коэффициент корреляции отрицателен, а, когда параметр достигает своих максимальных значений, корреляция становится положительной (коэффициент корреляции равен нулю, когда «период истории для расчета HV» составляет порядка 200 дней). Вновь заметим, что, когда те же данные рассматривались консолидировано (правый нижний график рис. 2.3.2), то мы не смогли обнаружить какую-либо взаимозависимость между этими целевыми функциями. Из этого можно было сделать не совсем верный вывод о полном отсутствии дублирования информации. Между тем детализированный анализ (рис. 2.3.3) позволяет уточнить, что информация не дублируется только во второй трети диапазона допустимых значений параметра.

Теперь перейдем к рассмотрению влияния второго параметра, «число дней до экспирации опционов» на взаимозависимость целевых функций (рис. 2.3.4). Данный параметр влияет на скоррелированность целевых функций в гораздо большей степени, чем «период истории для расчета HV» (сравни рис. 2.3.3 и 2.3.4). Даже небольшие изменения параметра приводят к весьма существенным изменениям корреляций. Коэффициенты корреляции почти всех пар целевых функций колеблются в очень широком диапазоне (от –0,9 до 0,9). Однако в отличии от предыдущего случая (когда рассматривалось влияние параметра «период истории для расчета HV») влияние количества дней, остающихся до истечения опционов, весьма хаотично. В динамике коэффициентов корреляции отсутствуют всякие признаки трендов.

Единственное исключение составляет пара целевых функций «прибыль» и «коэффициент Шарпа». В этом случае коэффициент корреляции не зависит от количества дней до экспирации и сохраняет максимально высокое значение почти на всем диапазоне допустимых значений параметра (рис. 2.3.4). Точно такая же картина наблюдалась для этой пары целевых функций при изучении влияния параметра «период истории для расчета HV» (рис. 2.3.3).

Можно сделать вывод, что, принимая решение о включении той или иной целевой функции в систему многокритериальной оптимизации, следует руководствоваться степенью взаимозависимости рассматриваемых функций. Предпочтение нужно отдавать тем из них, которые коррелируют в наименьшей степени. Это обеспечит внесение в систему максимального количества новой, недублирующейся информации. Определяя степень допустимой взаимозависимости (порог коэффициента корреляции, выше которого целевая функция не принимается), необходимо убедиться в том, что корреляция целевых функций не зависит от значений параметров. В случае если такая зависимость существует (как было показано выше), то для принятия решения нужно использовать такой коэффициент корреляции, который был рассчитан на данных, в наибольшей степени соответствующих логике разрабатываемой торговой стратегии.

2.4. Многокритериальная оптимизация

В предыдущем разделе мы рассмотрели вопрос выбора целевых функций для их дальнейшего использования в системе многокритериальной оптимизации. Данный раздел посвящен поиску оптимальных решений с помощью методов многокритериального анализа. Применительно к параметрической оптимизации задача многокритериального анализа состоит в одновременном использовании многих целевых функций (каждая из которых представляет собой отдельный критерий) для упорядочения узлов оптимизационного пространства (каждый из которых представляет собой определенную уникальную комбинацию параметров) по степени их предпочтительности.

Основная проблема многокритериальной оптимизации состоит в том, что полное упорядочение альтернатив может оказаться невозможным по причине их нетранзитивности. Поясним это на простом примере. Будем считать лучшим тот вариант, который превосходит остальные по большинству критериев. Предположим, что при сравнении трех узлов (А, В и С) по значениям трех целевых функций (критериев) был получен следующий результат: A = (1; 2; 3), B = (2; 3; 1), C = (3; 1; 2) – в скобках указаны значения критериев. Очевидно, что по первому и второму критерию узел B предпочтителен узлу A, а C лучше B по первому и третьему критерию. При соблюдении свойства транзитивности из этого должно следовать, что узел C предпочтителен A. Однако это не так, поскольку A превосходит C по двум критериям, второму и третьему.

Проблема нетранзитивности не имеет универсального решения. Тем не менее существуют два основных подхода, позволяющих получить приемлемое оптимальное решение (или несколько решений), несмотря на несоблюдение свойства транзитивности. Первый подход основывается на приведении всех целевых функций к единому критерию, называемому «свертка», второй подход состоит в применении метода Парето.

2.4.1. Свертка

Отказ от одновременного использования нескольких критериев путем замены их новым единственным критерием (представляющим собой некую функцию, аргументами которой являются исходные критерии) составляет суть свертки. Преимуществом свертки является простота реализации и возможность регулировать степень влияния различных критериев на результат оптимизации. Это достигается путем умножения значений критериев на выбранные весовые коэффициенты – чем больше вес данного критерия, тем большее влияние он окажет на окончательный результат многокритериальной оптимизации. Основным недостатком свертки является неизбежная потеря информации при переходе от многомерного вектора критериев к единственному показателю.

Наиболее распространенными являются два вида свертки: аддитивная (сумма или среднее арифметическое значений всех критериев) и мультипликативная (произведение или среднее геометрическое значений всех критериев). Применение мультипликативной свертки возможно, только если критерии неотрицательны (поскольку произведение двух отрицательных значений дают положительную величину), либо если только один из критериев может принимать отрицательные значения. Также нужно учитывать, что если один из критериев равен нулю, то и мультипликативная свертка равна нулю (для аддитивной свертки этого не происходит). В мультипликативной свертке по сравнению с аддитивной большее влияние оказывают критерии, имеющие более низкие значения. Аддитивная свертка наиболее приемлема для критериев, представляющих собой однородные по смыслу и близкие по масштабу значений величины.

Кроме аддитивной и мультипликативной, существует также селективная свертка, когда для каждого узла принимается в качестве значения свертки наименьшее (наиболее консервативный вариант свертки) или наибольшее (наиболее агрессивный вариант) значение из всего набора целевых функций. В книге «Опционы: системный подход к инвестициям» мы предложили методику минимаксной свертки, когда в качестве значения свертки используется произведение наибольшего и наименьшего значений критериев.

При расчете свертки необходимо помнить о том, что критерии могут измеряться в разных единицах и иметь различный масштаб величин. Для

Вы читаете Опционы
Добавить отзыв
ВСЕ ОТЗЫВЫ О КНИГЕ В ИЗБРАННОЕ

0

Вы можете отметить интересные вам фрагменты текста, которые будут доступны по уникальной ссылке в адресной строке браузера.

Отметить Добавить цитату