прямолинейные образующие). Плоские образующие максимальной размерности абсолютов этих пространств (n-1) -мерны, эти плоские образующие составляют одно связное семейство в 2n-мерном пространстве и два связных семейства в (2n-1) -мерном пространстве. В последнем случае (n-2) -мерные плоские образующие - параболические образы не являющиеся фундаментальными. Плоские образующие максимальной размерности абсолютов вещественных неевклидовых пространств связаны со спинорными представлениями групп движений этих пространств.
Фундаментальными параболическими образами в случае (2n-1)- мерного вещественного симплектического пространства являются точки и m-мерные нуль-плоскости (при m = 1 нуль-прямые). Нуль-прямые вещественного симплектического пространства образуют абсолютный линейный комплекс этого пространства.
Фундаментальные параболические образы комплексных и кватернионных проективных и эрмитовых неевклидовых и симплектических пространств аналогичны параболическим образам вещественных пространств. Параболическими образами конформных и псевдоконформных пространств являются их точки и m-мерные изотропные плоскости, при m = 1 - изотропные прямые.
Фундаментальные параболические образы пространств, фундаментальными грппами которых являются простые группы Ли, изображаются точками диаграмм Дынкина и Сатаке. В последнем случяе черные точки диаграмм Сатаке изображают вещественные образы, белые точки - мнимые образы, а белые точки, соединенные дугами с двумя стрелками, - комплексно сопряженные образы.
Со всяким параболическим образом связано представление фундаментальной группы пространства в виде прямой суммы 2k+1 линейных подпространств J + K+... + L. Подпространства J и L этой прямой суммы являются элластичными алгебрами, определенными И.Л.Кантором. В случае k =1 aлгебры J и L являются йордановыми алгебрами М.А.Джавадов и И.И.Колокольцева доказали, что спонорные предстаавлениягрупп движений неевклидобых пространств изображаются дробно-линейными преобразованиями этих йордановых алгебр.
Геометрические интерпретации, связанные с изоморфизмами простых и полупростых групп Ли
Упомянутые выше изоморфизмы простых и полупростых групп Ли ранга 1, 2 и3 определяют изоморфизмы вещественных простых и полупростых групп Ли с теми же рангами. С этими изоморфизмами вещественных групп Ли связаны геометрические интерпретации однородных пространств, фундаментальными группами которых являются эти группы Ли.
1) С локальным изоморфизмом компактных групп классов A1 и B1 связана изометричность комплексной эрмитовой эллиптической прямой линии кривизны 1/r2 и сферы радиуса r/2 3-мерного евклидова пространства.
С локальным изоморфизмом расщепленных групп классов A1 и B1 связана интерпретация О.Гессе плоскости Лобачевского на вещественной проективной прямой, при которой точки проективной прямой изображаются точками абсолюта плоскости Лобачевского, а пара точек проективной прямой - прямыми линиями плоскости Лобачевского.
С локальным изоморфизмом компактной группы класса D2 и прямого произведения двух компактнх групп класса А связана интерпретация А.П.Котельникова многообразия прямых линий 3-мерного вещественного эллиптического пространства на сфере двойного 3-мерного евклидова пространства, при которой пара полярно сопряженных прямых линий эллиптического пространства изображаются 4 точками пересечения сферы двойного пространства с диаметральными прямыми этой сферы.
С локальным изоморфизмом некомпактной группы класса D2 и комплексной группы класса A1 связана интерпретация А.П.Котельникова многообразия прямых линий 3-мерного пространства Лобачевского на сфере 3-мерного комплексного евклидова пространства, при которой прямые линии пространства Лобачевского изображаются парами диаметрально противоположных точек сферы комплексного пространства.
С локальным изоморфизмом некомпактной вещественной группы класса D2 и прямого произведения некомпактной и расщепленной групп класса A1 связана интерпретация Л.В.Румянцевой кватернионной симплектической прямой линии на паре комплексных эрмитовых прямых линий, эллиптической и гиперболической, при которой точки кватернионной прямой линии изображаются парами точек комплексных прямых линий, по одной точке на каждой линии.
С локальным изоморфизмом компактных групп классов B2 и C2 связана изометричность кватернионной эрмитовой эллиптической прямой линии кривизны 1/r2 и сферы радиуса r/2 5-мерного евклидова пространства.
С локальным изоморфизмом расщепленных групп классов B2 и C2 связана интерпретация 4-мерного вещественного псевдоэллиптического пространства индекса 2 в 3-мерном вещественном симплектическом пространстве, при которой 2-мерные плоские образующие абсолюта псевдоэллиптического пространства изображаются нуль-прямыми симплектического пространства.
С локальным изоморфизмом компактных групп классов A3 и D3 cвязана интерпретация Н.Д.Пецко 3- мерного комплексного эрмитова эллиптического пространства в 5-мерном вещественном эллиптическом пространстве при которой точки каждого из этих пространств изображаются паратактическими конгруэнциями прямых линий другого пространства.
С локальным изоморфизмом расщепленных групп классов A3 и D3 cвязана интерпретация Ю.Плюккера 3-мерного вещественного проективного пространства в 5-мерном вещественном псевдоэллиптическом пространстве индекса 3, при которой прямые линии 3- мерного пространства изображаются точками абсолюта 5-мерного пространства.
10) С локальным изоморфизмом некомпактных вещественных групп классов A3 и D3 связана интерпретация Р. Пенроуза 4-мерного псевдоконформного пространства индекса 1, в 3-мерном комплексном эрмитовом псевдоэллиптическом пространстве индекса 2, при которой точки псевдоконформного пространства изображаются прямолинейными образующими абсолюта комплексного пространства.
При этих интерпретациях образы симметри и параболические образы одного пространства изображаются такими же образами другого пространства.
Особые простые группы Ли
Алгебра альтернионов не является единственным обобщением тела кватернионов, другим обобщением является алгебра О октонионов или октав. Базис этой алгебры состоит из 8 элементов 1, i, j, k, l, p, q, r, причем элементы 1, i, j, k, элементы 1, k, p, q, элементы 1, q, r, i, элементы 1,i, l,p, элементы 1, k,, l, r, элементы 1, q, l, j и элементы 1, j, p, r образуют базисы алгебр кватернионов. Алгебра октонионов является телом, но не ассоциативным, так как (ij)l= -i(jl). Это тело является альтернативным, т.е. любые два элемента этого тела порождают ассоциативное подтело (тело H или поле C).
Аналогично определяется алгебра O' псевдооктонионов - алгера с базисом 1, i, j, k, e, f, q, h, последние 4 из которых можно рассматривать как произведение базисных элементов l, p, q, r aлгебры О на мнимую единицу, коммутурующую с элементами алгебры О. Алгебра O' является альтернативной алгеброй с делителями нуля.
Группы автоморфизмов тела О и алгебры O' являются, соответственно, компактной и расщепленной простыми гуппами Ли класса G2. Если ввести в алгебры О и O' метрики 8-мерных вещественных евклидова пространства и псевдоевклидова пространства индекса 4, в которых расстояние между элементами a и b равно модулю элемента b-a, то группы Ли автоморфизмов алгебр О и О' будут транзитивными на пересечениях гиперсфер, центрами которых являются нулевые элементы алгебр, с диаметральными гиперплоскостями этих гиперсфер ортогональными элементу 1.
Если отождествить диаметральнопротивоположные точки, полученных 6-мерных сфер, мы получим 6- мерные G-эллиптическое, G- псевдоэллиптическое и G-псевдогиперболическе пространства, группами преобразований являются компактная и расщепленная простые группы Ли класса G2. Эти пространства обладают почти комплексной или почти двойной структурой, т.е. касательные гиперплоскости этих гиперсфер обладают комплексной или двойной структурой, но в самих 6-мерных пространствах нельзя ввести комплексные или двойные координаты.
Геометрия этих пространств изучалась моими ученицами Н.Н.Адамушко и Р.Г.Тлуповой.
Компактная и расщепленная простые группы Ли класса F4 имеют характеры, соответственно, -52 и 4. Имеется еще одна некомпактная вещественная простая группа Ли этого класса с характером -2.
Компактная и расщепленная простые группы Ли класса Е6 имеют характеры, соответственно, -78 и 6.