при остывании, говорит, что скорость изменения температуры пропорциональна разности между температурой тела и температурой окружающей среды.
Наиболее важные уравнения в физике — те, что имеют дело с потоками жидкости, действием гравитации, движением планет, переносом тепла, распространением волн, действием магнетизма, распространением света и звука — это дифференциальные уравнения. Как впервые понял Ньютон, закономерности природы, как правило, принимают более простой вид и их легче сформулировать, если смотреть на скорости изменения величин, а не на сами интересующие нас величины[44].
Ли задал себе фундаментальный вопрос. Имеется ли для дифференциальных уравнений теория, аналогичная теории Галуа для алгебраических уравнений? Есть ли способ установить, когда дифференциальное уравнение можно решить заданными методами?
Ключевую роль здесь снова сыграла симметрия. Ли осознал, что некоторые из его результатов по геометрии можно было реинтерпретировать в терминах дифференциальных уравнений. К заданному решению конкретного дифференциального уравнения Ли мог применить преобразование (из конкретной группы) и доказать, что результат также является решением. Из одного решения получается много, причем все они связаны группой. Другими словами, группа состоит из симметрий данного дифференциального уравнения.
Здесь содержался прозрачный намек, что нечто прекрасное ожидало своего открытия. Вспомним о применениях симметрий, которые Галуа реализовал для алгебраических уравнений! А теперь представим себе нечто подобное для куда более важного класса дифференциальных уравнений!
Все группы, которые изучал Галуа, были конечными. Это значит, что число преобразований из группы — некоторое целое число[45]. Группа всех перестановок на пяти корнях уравнения пятой степени, например, содержит 120 элементов. Однако многие разумные группы бесконечны, и среди них — группы симметрий дифференциальных уравнений.
Одна распространенная бесконечная группа представляет собой группу симметрии окружности; она содержит преобразования, которые поворачивают окружность на любой — какой угодно — угол. Поскольку имеется бесконечно много возможных углов, группа вращений окружности бесконечна. Обозначение для этой группы — SO(2). Здесь O означает «ортогональный» — это указывает, что преобразования являются движениями плоскости без деформаций, a S означает «специальный» и указывает на вращения, которые не переворачивают плоскость.
Окружности имеют, кроме того, бесконечно много осей отражательной симметрии. Если отразить окружность относительно любого диаметра, то получится та же самая окружность. Добавление отражений приводит к большей группе O(2).
Окружность обладает бесконечным числом вращательных симметрий (слева) и бесконечным числом отражательных симметрий (справа).
Группы SO(2) и O(2) бесконечны, но это некоторый ручной вид бесконечности. Различные вращения можно задавать, указывая одно число — угол вращения. Когда два вращения выполняются одно за другим, соответствующие углы просто складываются. Ли назвал поведение такого типа «непрерывным», и в его терминологии SO(2) — непрерывная группа. А из-за того, что для указания угла требуется только одно число, группа SO(2) одномерна. То же имеет место и для O(2), поэтому все, что нам требуется, — это некоторый способ отличать отражения от вращений, а с этой задачей в алгебре справляются знаки плюс и минус.
Группа SO(2) представляет собой простейший пример
Ли открыл прекрасное свойство групп Ли: групповую структуру можно «линеаризовать». Это означает, что лежащее в основе группы искривленное многообразие можно заменить плоским эвклидовым пространством. Это касательное к многообразию пространство. Как это выглядит для SO(2), показано на рисунке.
От группы Ли к алгебре Ли: касательное пространство к окружности.
Когда групповая структура линеаризована подобным образом, на касательном пространстве возникает своя собственная алгебраическая структура, которая представляет собой некую «инфинитезимальную» версию групповой структуры и описывает, как ведут себя преобразования, очень близкие к тождественному. То, что получается, называется алгеброй Ли данной группы. У нее такая же размерность, как и у группы, но ее геометрия значительно упрощается, становясь плоской.
Разумеется, за эту простоту приходится кое-чем заплатить: алгебра Ли ухватывает многие важные свойства соответствующей группы, но некоторые тонкие детали ускользают. А те свойства, которые не теряются, подвергаются тонким изменениям. Тем не менее массу всего о группе Ли можно узнать, переходя к ее алгебре Ли, и на большую часть вопросов легче ответить в формализме алгебр Ли.
Оказывается — и в этом и состояло одно из великих усмотрений, сделанных Ли, — что естественная алгебраическая операция на алгебре Ли дается не произведением
В начале 1900-х годов, с рождением теории «дифференциальных полей», была наконец реализована мечта Ли о некоей «теории Галуа» дифференциальных уравнений. Но теория групп Ли оказалась намного более важной, чем ожидал он сам, и у нее возникли более широкие приложения. Теория групп Ли и алгебр Ли оказалась не просто средством для выяснения вопроса о том, какие дифференциальные уравнения можно решить конкретными способами, — она проникла практически во все области математики. Теория Ли вырвалась из-под власти своего создателя и стала могущественней, чем он мог вообразить.
При взгляде из дня сегодняшнего видно, что все дело в симметрии. Симметрия глубоко встроена в каждую область математики, и на ней базируется большинство основных идей математической физики. Симметрии выражают фундаментальную регулярность нашего мира, а это то, что двигает вперед физику. Непрерывные симметрии, такие как вращения, тесно связаны с природой пространства, времени и материи; из них вытекают различные законы сохранения, такие как закон сохранения энергии, который утверждает, что замкнутая система не может ни потерять, ни приобрести энергию. Эта связь была разработана Эмми Нетер, ученицей Гильберта[47].
Следующий шаг, разумеется, должен был состоять в том, чтобы разобраться с возможными группами Ли, подобно тому как Галуа и его последователи навели порядок со многими свойствами конечных групп. Здесь к охоте присоединяется второй математик.
Анна Катарина переживала за своего сына.
Врач считал, что маленький Вильгельм «сильно ослаблен и, кроме того, очень застенчив», «постоянно возбужден», но при этом он «совершенно непрактичный книжный червь». Здоровье Вильгельма улучшалось по мере взросления, но склонность быть книжным червем не убывала. Накануне своего 39-летия он опубликовал математическое исследование, обоснованные отзывы о котором говорят, что это «величайшая математическая работа всех времен». Такие утверждения, конечно, субъективны, однако работа, без сомнения, достойна высочайшего места во всяком подобном списке.