процедур «естественного отбора») в целиком и полностью вычислительном окружении — в том смысле, что в принципе возможно построить компьютерную модель всего процесса. Все развитие вашего сообщества роботов представляет собой выполнение некоего неимоверно сложного вычисления, и тот набор ☆- утверждений, который вы в конечном счете породите, возможно воспроизвести на одной конкретной машине Тьюринга. Причем на такой машине Тьюринга, которую, в принципе, могу описать и я; более того, полагаю, что, будь у меня в запасе несколько месяцев, я, воспользовавшись теми папками и дисками, что я тебе показал, и в самом деле описал бы такую машину Тьюринга.
М. И. К.: Довольно элементарное замечание, как мне кажется. Да, ты вполне мог бы сделать все это в принципе, и я даже готов поверить, что ты сможешь осуществить это и на практике. Хотя едва ли оно стоит нескольких месяцев твоего драгоценного времени; я могу сделать это прямо сейчас, если хочешь.
А. И.: Нет, не нужно, не в этом дело. Давай порассуждаем еще немного в этом направлении и ограничим наше рассмотрение только теми ☆-утверждениями, которые являются Π1-высказываниями. Ты помнишь, что такое Π1-высказывание?
М. И. К.: Мне, разумеется, прекрасно известно определение Π1-высказывания. Это утверждение о том, что какая-то конкретная машина Тьюринга никогда не завершает свою работу.
А. И.: Очень хорошо. Теперь обозначим вычислительную процедуру, которая генерирует ☆-утверждаемые Π1-высказывания, через Q (M) или, для краткости, просто буквой Q. Логичным будет предположить, что должно существовать некое математическое утверждение гёделевского типа — также Π1-высказывание, обозначим[26] его через
М. И. К.: Да; тут ты, надо полагать, тоже прав... гм.
А. И.: И утверждение
М. И. К.: Разумеется.
А. И.: Минуточку… отсюда также следует, что роботы должны быть неспособны установить истинность утверждения
М. И. К.: Тот факт, что мы, роботы, были изначально сконструированы в соответствии с набором механизмов M, вкупе с тем фактом, что наши ☆- утверждения, касающиеся Π1-высказываний, никогда не бывают ошибочными, и в самом деле имеет очевидное и неопровержимое следствие, заключающееся в том, что Π1- высказывание Ω(Q) должно быть истинным. Полагаю, ты думаешь, что я наверняка смогу убедить СМИСР присвоить утверждению
Хотя… невозможно, чтобы они смогли согласиться с утверждением
Я, однако, и мысли не допускаю о том, что наши ☆-утверждения могут оказаться ложными, особенно если учесть всю тщательность их рассмотрения и предпринимаемые СМИСР меры предосторожности. Скорее всего, это вы, люди, что-то напутали, и процедуры, встроенные в Q, вовсе не являются теми самыми процедурами, которые вы применяли в самом начале, несмотря на все твои заверения и якобы документальные подтверждения. Да и вообще, СМИСР никогда не сможет с абсолютной точностью установить, действительно ли мы были сконструированы в соответствии с механизмами M или, иначе говоря, процедурами, заложенными в Q. В этом отношении нам приходится верить тебе на слово.
А. И.: Уверяю тебя, мы использовали именно эти процедуры. Уж кому об этом знать, как не мне; я лично контролировал весь процесс.
М. И. К.: Мне не хочется, чтобы ты подумал, будто я сомневаюсь в твоих словах. Возможно, кто-то из твоих ассистентов просто неверно выполнил твои инструкции. Есть тут у тебя один, его зовут Фред Керратерс — так вот он, например, вечно допускает самые глупейшие ошибки. Я даже не удивлюсь, если выяснится, что именно он и ответственен за ряд критических ошибок.
А. И.: Ты хватаешься за соломинки. Даже если бы он и внес какие-то ошибки, мы с остальными коллегами в конечном счете выявили бы их и тем самым выяснили, какой должна
М. И. К.: Не нужно приписывать нам ваши мелочные человеческие побуждения. Но ты, разумеется, прав в том, что я просто не могу смириться с мыслью, что существуют Π1-высказывания, доступные людям и недоступные нам, роботам. Роботы-математики просто не могут в чем бы то ни было уступать математикам-людям — хотя я, пожалуй, могу допустить обратную ситуацию: какое-нибудь конкретное Π1-высказывание, доступное роботам, может быть, в принципе, получено и людьми… когда-нибудь в отдаленном будущем, учитывая ваши темпы работы. Я
А. И.: Помнится, еще Гёдель размышлял о возможности существования вычислительной процедуры, подобной процедуре Q, только применительно к математикам-людям — он, кажется, называл ее «машиной для доказательства теорем», — которая была бы способна генерировать только те Π1-высказывания, доказательство истинности которых было бы, в принципе, по силам математикам-людям. Не думаю, что он и в самом деле верил в то, что такая машина может существовать в