числа c необходимо задавать в явном виде только однажды (после чего внутри системы достаточно обозначения c). Если при задании величины с используется чисто двоичное представление, то (при больших c) такое описание дает всего- навсего логарифмическую зависимость γ от c (поскольку количество знаков в двоичном представлении натурального n равно приблизительно log2n). Вообще говоря, учитывая, что число с интересует нас лишь в качестве возможного предела, точное значение которого находить вовсе не обязательно, мы можем поступить гораздо более остроумным образом. Например, число 22...2 с s показателями можно задать с помощью s символов или около того, и вовсе нетрудно подыскать примеры, в которых величина задаваемого числа возрастает с ростом s еще быстрее. Сгодится любая вычислимая функция от s. Иными словами, для того чтобы задать предел c (при достаточно большом значении c), необходимо всего лишь несколько символов.

Что касается второй причины, т.е. зависимости от c чисел T, L и N, то, в силу вышеизложенных соображений, представляется очевидным, что для задания величин этих чисел (в особенности, их возможных предельных значений) совершенно не требуется, чтобы количество знаков в их двоичном представлении возрастало так же быстро, как c; более чем достаточно будет и, скажем, обыкновенной логарифмической зависимости от c. Следовательно, мы с легкостью можем допустить, что зависимость величины γ + 210 log2(γ + 336) от c является не более чем грубо логарифмической, а также устроить так, чтобы само число c всегда было больше этой величины.

Согласимся с таким выбором с и будем в дальнейшем вместо Q (c) записывать Q*. Итак, Q* есть формальная система, теоремами которой являются все математические высказывания, какие можно вывести из конечного количества √кратких ☆M-утверждений, используя стандартные логические правила (исчисление предикатов). Количество этих ☆M-утверждений конечно, поэтому разумным будет предположить, что для гарантии их действительной безошибочности вполне достаточно некоторого набора постоянных T, L и N. Если роботы верят в это с ☆M-убежденностью, то они, несомненно, ☆M-заключат, что гёделевское предположение G(Q*) также истинно на основании гипотезы M, поскольку является Π1-высказыванием меньшей, нежели c, сложности. Рассуждение для получения утверждения G (Q*) из ☆M-убежденности в обоснованности формальной системы Q* достаточно просто (в сущности, я его уже привел), так что с присвоением этому утверждению статуса ☆M проблем возникнуть не должно. То есть само G(Q*) также должно быть теоремой системы Q*. Это, однако, противоречит убежденности роботов в обоснованности Q*. Таким образом, упомянутая убежденность (при условии справедливости гипотезы M и достаточно больших числах T, L и N) оказывается несовместимой с убежденностью в том, что поведением роботов действительно управляют механизмы M, — а значит, механизмы M поведением роботов управлять не могут.

Как же роботы могут удостовериться в том, что были выбраны достаточно большие числа T, L и N? Никак. Вместо этого они могут выбрать некоторый набор таких чисел и попробовать допустить, что те достаточно велики, — и прийти в результате к противоречию с исходным предположением, согласно которому их поведение обусловлено набором механизмов M. Далее они вольны предположить, что достаточным окажется набор из несколько больших чисел, — снова прийти к противоречию и т.д. Вскоре они сообразят, что к противоречию они приходят при любом выборе значений (вообще говоря, здесь нужно учесть, помимо прочего, небольшой технический момент, суть которого состоит в том, что при совершенно уже запредельных значениях T, L и N значение c также должно будет несколько подрасти — однако это неважно). Таким образом, получая один и тот же результат вне зависимости от значений T, L и N, роботы — равно как, по всей видимости, и мы — приходят к заключению, что в основе их математических мыслительных процессов не может лежать познаваемая вычислительная процедура M, какой бы она ни была.

3.21. Окончателен ли приговор?

Отметим, что к такому же выводу мы придем и в случае принятия нами самых разных возможных мер предосторожности, причем вовсе необязательно подобных тем, что я предлагал выше. Наверняка в предложенную модель можно еще внести множество усовершенствований. Можно, например, предположить, что роботы в результате длительной работы впадают в «старческое слабоумие», их сообщества вырождаются, а стандарты падают, т.е. увеличение числа T выше определенного значения на деле увеличивает и вероятность ошибки в ☆M-утверждениях. С другой стороны, если слишком большим сделать N (или L), то возникает риск исключить вообще все ☆M-утверждения из-за существующего в сообществе меньшинства «глупых» роботов, разражающихся время от времени произвольными ☆M-утверждениями, которые в данном случае не перекроются необходимым количеством ☆-утверждений, формулируемых роботами здравомыслящими. Несомненно, не составит большого труда такой риск полностью исключить, введя еще несколько ограничивающих параметров или, скажем, сформировав группу элитных роботов, силами которых рядовые члены сообщества будут непрерывно тестироваться на предмет адекватности своих интеллектуальных способностей, и потребовав к тому же, чтобы статус йг присваивался утверждениям только с одобрения всего сообщества роботов в целом.

Существует и много других возможностей улучшения качества ☆M-утверждений или исключения ошибочных утверждений из общего (конечного) их числа. Кого-то, возможно, обеспокоит тот факт, что, несмотря на установление предела с сложности Π1-высказываний, ограничивающего общее количество кандидатов на ☆- или ☆M-статус до некоторой конечной величины, эта величина окажется все же чрезвычайно огромной (будучи экспоненциально зависимой от c), вследствие чего становится весьма сложно однозначно удостовериться, что исключены все возможные ошибочные ☆M-утверждения. В самом деле, никакого ограничения не задается в рамках нашей модели на количество «робото-вычислений», необходимых для получения удовлетворительного ☆M-доказательства какого-либо из Π1-высказываний. Следует ввести четкое правило: чем длиннее в таком доказательстве цепь рассуждений, тем более жесткие критерии применяются при решении вопроса о присвоении ему

Добавить отзыв
ВСЕ ОТЗЫВЫ О КНИГЕ В ИЗБРАННОЕ

0

Вы можете отметить интересные вам фрагменты текста, которые будут доступны по уникальной ссылке в адресной строке браузера.

Отметить Добавить цитату