предложенные Фреге методы построения умозаключений вполне достоверными и даже, возможно, строили бы на их фундаменте собственные системы.
Впрочем, полагаю, в данном случае крайне маловероятно, что многим математикам удалось бы в течение сколько-нибудь длительного срока наслаждаться той свободой умопостроений (в отношении бесконечных множеств), какую предоставляла система Фреге. Причина в том, что парадоксы типа парадокса Рассела довольно легко обнаружить. Можно представить себе какой-нибудь гораздо более тонкий парадокс, например, такой, что неявным образом содержится в тех или иных полагаемых нами на данный момент неопровержимо истинными математических процедурах, — парадокс, о котором никто не узнает еще, быть может, многие века. Необходимость в смене привычных правил мы осознаем лишь тогда, когда такой парадокс наконец себя проявит. Короче говоря, наша математическая интуиция не зиждется на каких-то непреходящих в веках установлениях, а напротив, непрерывно меняется под сильным воздействием идей, которые прекрасно «работали»
Разумеется, с моей стороны было бы наивным отрицать тот факт, что в методах, которые применяют в своей работе математики, нередко присутствует элемент «доверия» процедуре, если она «до сих пор, кажется, работает». В моей собственной математической практике такие предварительные, ориентировочные, нечеткие соображения составляют в общей совокупности рассуждений весьма заметный процент. Однако они, как правило, обретаются в той области, которая «отвечает» за нащупывание нового, еще не сформировавшегося понимания, а никак не в той, где мы «складываем» неопровержимо, на наш взгляд, установленные истины. Я очень сомневаюсь, что сам Фреге так уж категорически полагал свою систему абсолютно неопровержимой, даже не подозревая еще о парадоксе, о котором написал ему Рассел. Система суждений столь общего характера, что бы ни думал по ее поводу автор, всегда выдвигается на всеобщее обозрение с некоторой настороженностью. Лишь после длительного «периода осмысления» можно будет полагать, что она достигла, наконец, «уровня неопровержимости». Имея же дело с системой настолько общей, как система Фреге, в любом случае, как мне кажется, следует употреблять выражения вида «полагая систему Фреге обоснованной, можно считать справедливым то-то и то-то», а не просто утверждать эти самые «то-то и то-то» без упомянутой оговорки. (См. также комментарии к возражениям Q11 и Q12.)
Возможно, в настоящее время математики стали более осторожными в отношении того, что они готовы рассматривать как «неопровержимую истину» — эпоха осторожности сменила эпоху отчаянной дерзости (среди примеров которой работа Фреге занимает далеко не последнее место), пришедшуюся на конец XIX столетия. С выходом на сцену парадокса Рассела и прочих ему подобных необходимость в такой осторожности проявляется особенно наглядно. Что же касается дерзости, то она, по большей части, уходит корнями в те времена, когда математики начали потихоньку осознавать всю мощь канторовой теории бесконечных чисел и бесконечных множеств, выдвинутой им в начале того же XIX века. (Следует, впрочем, отметить, что Кантор знал о парадоксах, подобных парадоксу Рассела, — задолго до того, как сам Рассел обнаружил тот, что был назван его именем{41}, — и предпринимал попытки усовершенствовать свою формулировку с тем, чтобы, по возможности, учитывать подобные проблемы.) Цели и характер моих рассуждений на этих страницах также, несомненно, требуют крайней осторожности. И я безмерно рад, что нам с вами приходится иметь дело только с утверждениями, истинность которых неопровержима, и что нет никакой необходимости влезать в дебри бесконечных множеств и прочих сомнительных понятий. Важно помнить, что —
Наконец, в связи с возможной необоснованностью нашей гипотетической системы F, вернемся ненадолго к другим аспектам человеческой «неточности», о которых мы говорили выше (см. комментарии к возражениям Q12 и Q13). Прежде всего повторю: нас в данном случае интересуют
Я вовсе не хочу сказать, что математики, полагающиеся на понимание, не делают ошибок, — делают, и даже часто: понимание тоже можно применить некорректно. Безусловно, математики допускают ошибки и в рассуждениях, и в понимании, а также в сопутствующих вычислениях. Однако склонность к совершению подобных ошибок, в сущности, не
Ошибки несколько иного рода возникают при неверной формулировке математического утверждения; в этом случае выдвигающий утверждение математик, возможно,