сверхъестественно достоверной алгоритмической процедурой для установления справедливости Π1-высказываний, причины успешного функционирования которой будут принципиально недоступны человеческому пониманию; вместо этого он предоставит средства для углубления вашего математического понимания и усиления вашей же интуиции. А в этом, согласитесь, есть нечто, в корне отличное от алгоритма F (или формальной системы F), описанного в соответствии с возможностью II. Более того, никто никогда и не предлагал эвристического принципа, позволившего бы сгенерировать в точности все Π1-высказывания, истинность которых может быть однозначно установлена математиками.

Разумеется, из всего этого вовсе не следует, что упомянутый алгоритм F (гипотетическая машина Гёделя для доказательства теорем) является логически невозможным; однако, с позиции нашего математического понимания, вероятность существования такой машины представляется исключительно малой. Во всяком случае, в настоящее время ни у кого пока нет ни малейшего предположения относительно возможной природы подобного алгоритма F, равно как нет и никаких намеков на его действительное существование. Он может существовать, в лучшем случае, в качестве гипотезы — причем гипотезы недоказуемой. (Ее доказательство будет равносильно ее опровержению!) Мне думается, что со стороны любого из сторонников идеи ИИ (независимо от того, принадлежит он к лагерю A или B) является в высшей степени безрассудным возлагать какие бы то ни было надежды на отыскание такой алгоритмической процедуры[22] (обобщенной здесь в виде алгоритма F), само существование которой крайне сомнительно, а точное построение (существуй она в действительности) едва ли по силам любому из ныне живущих математиков или логиков.

Можно ли допустить, что подобный алгоритм F все же существует и, более того, может быть получен с помощью достаточно сложных вычислительных процедур восходящего типа? В §§3.5-3.23, в рамках обсуждения случая III, я приведу серьезные логические доводы, убедительно демонстрирующие, что ни одна из познаваемых восходящих процедур не в состоянии привести нас к алгоритму F, даже если бы он и в самом деле существовал. Таким образом, можно заключить, что в качестве сколько-нибудь серьезной логической возможности нельзя рассматривать даже «гёделеву машину для доказательства теорем» — если, конечно, не допустить, что в основе всего математического понимания в целом лежат некие «непознаваемые механизмы», природа которых, увы, не оставляет поборникам ИИ ни единого шанса.

Прежде чем мы перейдем к обещанному более подробному обсуждению случая III, необходимо разобраться до конца со случаем II — здесь остается еще одна альтернатива, суть которой заключается в том, что фундаментальная алгоритмическая процедура F (или формальная система F) может оказаться необоснованной (случай I, как мы помним, такой лазейки не допускал). Может ли быть так, что человеческое математическое понимание представляет собой эквивалент некоего познаваемого алгоритма, который в основе своей ошибочен? Рассмотрим эту возможность подробнее.

3.4. Не действуют ли математики, сами того не осознавая, в соответствии с необоснованным алгоритмом?

Допустим, что в основе математического понимания и в самом деле лежит некая необоснованная формальная система F. Как же мы тогда можем быть уверены, что наши математические представления в отношении того, что считать неоспоримо истинным, не введут нас в один прекрасный день в какое-нибудь фундаментальное заблуждение? А может, это уже случилось? Ситуация несколько отличается от той, что рассматривалась в связи со случаем I, где мы исключили возможность нашего знания о том, что некая система F и в самом деле является необоснованной. Здесь же мы допускаем, что подобная роль системы F принципиально непознаваема, вследствие чего нам придется повторно рассмотреть вариант с возможной необоснованностью F. Можно ли считать действительно правдоподобным предположение о том, что фундаментом для наших неопровержимых математических убеждений служит некая необоснованная система — настолько необоснованная, что одним из этих убеждений может, в принципе, оказаться уверенность в истинности равенства 1 = 2. Несомненно одно: если мы не можем доверять собственным математическим суждениям, то мы равным образом не можем доверять и всем остальным своим суждениям об устройстве и функционировании окружающего нас мира, поскольку математические суждения составляют весьма существенную часть всего нашего научного понимания.

Кто-то, тем не менее, возразит, что нет ничего невероятного в том, что какие-то современные общепринятые математические суждения (или суждения, которые мы будем считать неоспоримыми в будущем) содержат скрытые «врожденные» противоречия. Возможно, сошлется даже на тот знаменитый парадокс (о «множестве множеств, которые не являются элементами самих себя»), о котором Бертран Рассел писал Готтлобу Фреге в 1902 году, как раз тогда, когда Фреге собирался опубликовать труд всей своей жизни, посвященный основам математики (см. также комментарий к возражению Q9, §2.7 и НРК, с. 100). В приложении к книге Фреге писал (см. [127]):

Вряд ли с ученым может приключиться что-либо более нежеланное, чем потрясение основ его мировоззрения сразу вслед за тем, как он закончил изложение их на бумаге. Именно в такое положение поставило меня письмо от г-на Бертрана Рассела…

Разумеется, мы всегда можем сказать, что Фреге просто-напросто ошибся. Всем известно, что математики иногда допускают ошибки — порой даже весьма серьезные. Более того, как явствует из признания самого Фреге, его ошибка была вполне исправимой. Разве мы не убедились (в §2.10, комментарий к Q13) в том, что подобные исправимые ошибки не имеют к нашим рассуждениям никакого отношения? Мы рассматриваем здесь, как и в §2.10, лишь принципиальные вопросы, а не подверженность ошибкам отдельных представителей математического сообщества. Ошибки же, на которые можно указать, ошибочность которых можно однозначно продемонстрировать, вовсе не принадлежат к категории принципиальных вопросов, разве не так? Все так, однако ситуация, рассматриваемая нами в настоящий момент, несколько отличается от той, что обсуждалась в комментарии к возражению Q13, поскольку теперь у нас есть формальная система F, которая, возможно, лежит в основе нашего математического понимания, только мы об этом не знаем. Как и прежде, нас не занимают единичные ошибки — или «оговорки», — которые может допустить отдельный математик, рассуждая в рамках какой-то в общем непротиворечивой системы. Однако теперь речь идет еще и о том, что сама система может содержать в себе некие глобальные противоречия. Именно это и произошло в случае с Фреге. Не узнай Фреге о парадоксе Рассела (или ином парадоксе сходной природы), вряд ли кто-либо смог бы убедить его в том, что в его систему вкралась фундаментальная ошибка. Дело не в том, что Рассел указал на какое-то формальное упущение в рассуждениях Фреге, а Фреге признал наличие ошибки, руководствуясь собственными канонами построения умозаключений; нет, Фреге продемонстрировали, что в самих этих канонах содержится некое изначальное противоречие. И именно факт наличия противоречия, а не что-либо иное, убедило Фреге в том, что его рассуждения ошибочны, а то, что прежде представлялось несокрушимой истиной, на деле фундаментально неверно. При этом о существовании ошибки стало известно только благодаря тому, что вскрылось противоречие. Если бы факт противоречивости установлен не был, то математики могли бы еще долгое время считать

Добавить отзыв
ВСЕ ОТЗЫВЫ О КНИГЕ В ИЗБРАННОЕ

0

Вы можете отметить интересные вам фрагменты текста, которые будут доступны по уникальной ссылке в адресной строке браузера.

Отметить Добавить цитату