(см. цитату в §3.1). В сущности, такую «машину», как я поясню ниже, как раз и можно представить в виде некоторой алгоритмической процедуры F, соответствующей вышеприведенным пунктам II или III. Как отмечает Гёдель, его гипотетическая машина для доказательства теорем может быть «эмпирически реализована», что соответствует требованию «сознательной познаваемости» процедуры F в случае II; если же подобная реализация оказывается невозможной, то мы, по сути, имеем дело со случаем III.
На основании своей знаменитой теоремы Гёдель утверждал, что невозможно доказать «эквивалентность» процедуры F (или, что то же самое, формальной системы F; см. §2.9) «математической интуиции» (см. ту же цитату). В определении случая II (и, как следствие, III) я сформулировал это фундаментальное ограничение, налагаемое на F, несколько по-иному: «Тот факт, что математическое понимание основывается именно на этой алгоритмической процедуре, остается как неосознаваемым, так и непознаваемым».
Это ограничение (необходимость в котором следует из обоснованного в §3.2 исключения случая I) со всей очевидностью приводит к невозможности показать, что процедура F эквивалентна математической интуиции, поскольку посредством подобной демонстрации мы могли бы однозначно убедиться в том, что процедура F действительно выполняет ту роль, о самом факте выполнения которой мы предположительно не в состоянии ничего знать. И наоборот, если бы эта самая роль процедуры F (роль фундаментального алгоритма, в соответствии с которым осуществляется постижение математических истин) допускала осознанное познание (в том смысле, что мы могли бы в полной мере постичь, как именно процедура F выполняет эту свою роль), то нам пришлось бы признать и обоснованность F. Ибо если мы не допускаем, что процедура F целиком и полностью обоснованна, то это означает, что мы отвергаем какие-то ее следствия. А ее следствиями являются как раз те математические положения (или хотя бы только Π1-высказывания), которые мы полагаем-таки истинными. Таким образом знание роли процедуры F равнозначно наличию доказательства F, хотя такое «доказательство» и нельзя считать формальным доказательством в рамках некоторой заранее заданной формальной системы.
Отметим также, что истинные Π1-высказывания можно рассматривать в качестве примеров тех самых «корректных теорем конечной теории чисел», о которых говорил Гёдель. Более того, если понятие «конечной теории чисел» включает в себя μ-операцию «отыскания наименьшего натурального числа, обладающего таким-то свойством», в каковом случае оно включает в себя и процедуры, выполняемые машинами Тьюринга (см. конец §2.8), то тогда частью конечной теории чисел следует считать все Π1-высказывания. Иными словами, получается, что доказательство гёделевского типа не дает четкого способа исключить из рассмотрения случай II, руководствуясь одними лишь строго логическими основаниями — по крайней мере, до тех пор, пока мы полагаем, что Гёдель был прав.
С другой стороны, можно задаться вопросом об общем правдоподобии предположения II. Рассмотрим, что повлечет за собой существование познаваемой процедуры F, непознаваемым образом эквивалентной человеческому математическому пониманию (заведомо непогрешимому). Как уже отмечалось, ничто не мешает нам мысленно перенестись в некое будущее время, в котором эта процедура окажется обнаружена и подробно описана. Известно также (см. §2.7), что формальная система задается в виде некоторого набора аксиом и правил действия. Теоремы системы F представляют собой утверждения (иначе называемые «положениями»), выводимые из аксиом с помощью правил действия, причем все теоремы можно сформулировать посредством того же набора символов, который используется для выражения аксиом. А теперь представим себе, что теоремы системы F в точности совпадают с теми положениями (сформулированными с помощью упомянутых символов), неопровержимую истинность которых математики, в принципе, способны самостоятельно установить.
Допустим на минуту, что перечень аксиом системы F является конечным. Сами же аксиомы суть не что иное, как частные случаи соответствующих теорем. Однако неопровержимую истинность каждой теоремы мы можем, в принципе, постичь посредством математического понимания и интуиции. Следовательно, каждая аксиома в отдельности должна выражать нечто такое, что (по крайней мере, в принципе) постижимо посредством этого самого математического понимания. Иными словами, для каждой отдельной аксиомы когда-нибудь непременно настанет (либо принципиально возможно, что настанет) время, когда ее неопровержимая истинность будет однозначно установлена. Так, рассматривая одну за другой, мы сможем устанавливать истинность любой отдельно взятой аксиомы системы F. Таким образом, в конечном итоге будет установлена (либо принципиально возможно, что будет установлена) неопровержимая истинность всех отдельно взятых аксиом. Соответственно, настанет время, когда будет установлена неопровержимая истинность всей совокупности аксиом системы F в целом.
А как быть с правилами действия? Можем ли мы предположить, что настанет время, когда будет однозначно установлена неопровержимая обоснованность этих правил? Во многих формальных системах правилами действия служат достаточно простые утверждения, каждое из которых с очевидностью «неопровержимо», например: «Если установлено, что высказывание P является теоремой и высказывание P ⇒ Q является теоремой, то можно заключить, что высказывание Q также является теоремой» (относительно символа ⇒ «следует» см. НРК, с. 393, или [223]). Признать неоспоримую справедливость таких правил совсем не трудно. С другой стороны, среди правил действия встречаются и гораздо более тонкие отношения, справедливость которых вовсе не так очевидна; прежде чем прийти к однозначному решению относительно того, считать то или иное такое правило «неопровержимо обоснованным» или нет. нам, возможно, потребуется прибегнуть к весьма подробному и тщательному анализу. Более того, как мы вскоре убедимся, в наборе правил действия формальной системы F неизбежно имеются такие правила, неоспоримая обоснованность которых не может быть достоверно установлена ни одним математиком — причем мы все еще полагаем, что число аксиом в системе F конечно.
В чем же причина? Перенесемся в воображении в то самое время, когда уже однозначно установлена неопровержимая справедливость всех аксиом формальной системы F. Перед нами открывается замечательная возможность без помех рассмотреть всю систему F целиком. Попробуем допустить, что все правила действия системы F можно также считать справедливыми безо всяких оговорок. Хотя предполагается, что мы еще не можем знать наверняка, что система F действительно включает в себя всю математику, которая в принципе доступна человеческому пониманию и интуиции, мы должны к настоящему моменту уже убедиться в том, что система F является, по меньшей мере, неоспоримо обоснованной, поскольку справедливость как ее аксиом, так и ее правил действия безоговорочно нами принимается. Следовательно, мы также должны уже быть уверены в том, что система F непротиворечива. Не забываем, разумеется, и о том, что, в силу этой непротиворечивости, утверждение G(F) также должно быть истинным — более того, неопровержимо истинным! Однако, поскольку предполагается, что система F фактически (хотя нам об этом неизвестно) включает в себя всю совокупность того, что безоговорочно доступно нашему пониманию, утверждение G(F) должно на деле представлять собой теорему системы F. Согласно теореме Гёделя, такое, вообще говоря, возможно только в том случае, если формальная система F противоречива. Если же система