высокотемпературная сверхпроводимость является серьезным свидетельством в пользу предположения о возможности существования квантовокогерентных эффектов в биологических системах.

Более того, еще задолго до обнаружения феномена высокотемпературной сверхпроводимости выдающийся физик Герберт Фрёлих (совершивший в 1930-е годы один из фундаментальных «прорывов» в понимании «обычной» низкотемпературной сверхпроводимости) предположил, что коллективные квантовые эффекты могут играть определенную роль в биологических системах. Заинтересовавшись необычным феноменом, наблюдавшимся еще в 1938 году на биологических мембранах (и применив концепцию, предложенную Ларсом Онсагером и моим братом, Оливером Пенроузом [289], — о чем я, занявшись изучением вопроса, узнал с некоторым удивлением), Фрёлих в 1968 году [129] пришел к выводу, что биологическая квантовая когерентность должна вызывать в живых клетках колебательные эффекты, резонирующие с микроволновым электромагнитным излучением на частоте 1011 Гц. Эти эффекты не требуют низких температур и возникают благодаря большой энергии метаболических процессов. Сегодня мы располагаем достоверными экспериментальными свидетельствами, подтверждающими наличие во многих биологических системах в точности таких эффектов, какие предсказывал в 1968 году Фрёлих. Чуть позже (в §7.5) мы попробуем разобраться, какое отношение эти феномены могут иметь к работе мозга.

7.2. Нейроны, синапсы и компьютеры

Получить явное подтверждение тому, что квантовая когерентность действительно может играть в биологических системах ключевую роль, конечно же, отрадно, однако суть этой самой роли применительно к процессам, имеющим непосредственное отношение к функционированию мозга, пока совершенно не ясна. Наше понимание работы мозга, все еще очень смутное, сводится, по большей части, к классическому представлению (совпадающему, в основном, с тем, что предложили еще в 1943 году Маккаллох и Питтс), согласно которому нейроны и соединяющие их синапсы выполняют в мозге практически те же функции, что и транзисторы вместе с соединяющими их дорожками в печатных схемах современных компьютеров. Более детальная биологическая картина выглядит так: классические нервные сигналы распространяются из центрального тела нейрона (сомы) вдоль очень длинного волокна, называемого аксоном, причем от аксона в различных местах ответвляются отдельные отростки (см. рис. 7.1). Каждый отросток непременно заканчивается синапсом — соединением, посредством которого сигнал через синаптическую щель передается к следующему нейрону (как правило). Именно на этой стадии в процесс вступают химические вещества, называемые нейромедиаторами, — перемещаясь от одной клетки (нейрона) к другой, они переносят сообщение о возбуждении предыдущего нейрона. Такое синаптическое соединение приходится либо на древовидный отросток (дендрит) следующего нейрона (в большинстве случаев), либо на его сому. Одни синапсы являются по своей природе возбуждающими, их нейромедиаторы усиливают возбуждение следующего нейрона; другие же, напротив, — тормозящие, и их нейромедиаторы (отличные от первых) возбуждение следующего нейрона ослабляют. Воздействие различных синапсов на нейрон суммируется (возбуждение учитываем со знаком «плюс», а торможение — со знаком «минус»), и по достижении определенного порогового значения нейрон возбуждается[51] . Правильнее, впрочем, будет сказать, что существует высокая вероятность такого возбуждения. Определенный случайный фактор присутствует во всех процессах такого рода.

Рис. 7.1. Нейрон и его соединение с другими нейронами посредством синапсов.

Таким образом — во всяком случае, пока, — не возникает сомнений в том, что изложенная картина может быть эффективно смоделирована численными методами, если допустить, что синаптические связи и их индивидуальная интенсивность со временем не изменяются. (Наличие случайных составляющих, разумеется, никаких проблем в смысле вычислимости не представляет, см. §1.9). В самом деле, несложно заметить, что вышеописанная нейронно-синапсовая схема (с постоянными синапсами и их интенсивностями) существенно эквивалентна схеме компьютера (см. НРК, с. 392—396). Однако благодаря феномену так называемой пластичности мозга, интенсивность по крайней мере некоторых синаптических связей может время от времени изменяться — порой быстрее, чем за секунду, — а кроме того, изменяться могут и сами связи. Что ставит нас перед немаловажным вопросом: что же этими синаптическими изменениями управляет?

В коннекционистских моделях (применяемых при разработке искусственных нейронных сетей) синаптические изменения описываются определенным вычислительным правилом. Это правило устанавливается таким образом, чтобы система могла в процессе работы повышать свою эффективность, сравнивая поступающую на ее вход извне информацию с некоторыми заранее заданными критериями. Простое правило такого типа предложил Дональд Хебб еще в 1949 году [193]. Современные коннекционистские модели{87} используют различные модификации (порой весьма значительные) все той же процедуры Хебба. Любая модель такого рода непременно должна иметь в своей основе хоть какое- нибудь четкое вычислительное правило, поскольку выполняются эти модели на самых обычных компьютерах; см. §1.5. Однако, в силу изложенной в первой части аргументации, никакая вычислительная процедура не может адекватно объяснить все операционные проявления человеческого сознательного понимания. Следовательно, нужно искать какой-то другой управляющий «механизм» — по крайней мере, для объяснения синаптических изменений, возможно, имеющих некоторое отношение к настоящей сознательной деятельности мозга.

Были выдвинуты и другие идеи; например, Джеральд Эдельман в своей книге «Прозрачный воздух, сверкающий огонь» [112] (и в более ранней трилогии [109, 110, 111]) предположил, что в мозге действуют не правила типа правила Хебба, а, скорее, некий вариант «дарвиновского» эволюционного принципа, позволяющий мозгу непрерывно повышать свою эффективность, управляя синаптическими связями посредством своеобразного естественного отбора, — при этом Эдельман указывает на весьма многозначительные параллели между своей моделью и процессом развития иммунной системой способности «распознавать» вещества. Особое значение в этой модели придается сложной роли нейромедиаторов и других химических соединений, задействованных в коммуникации между нейронами. Однако на сегодняшний день соответствующие процессы по-прежнему рассматриваются как классические и вычислимые. Вместе со своими коллегами Эдельман даже построил ряд устройств с компьютерным управлением (получивших названия DARWIN I, II, III, IV и т.д.), предназначенных для моделирования (с увеличением степени сложности) как раз той самой процедуры, которая, по его предположению, лежит в основе умственной деятельности. Однако тот факт, что управляющие функции в устройствах Эдельмана возложены на самый обычный универсальный компьютер, вполне недвусмысленно показывает, что и эта схема является исключительно вычислительной — просто здесь используется некая «восходящая» система правил. При этом совершенно не важно, какими именно деталями данная схема отличается от других вычислительных процедур. Она все равно принадлежит к той категории, что мы обсуждали в первой части, — см. §1.5, а также §3.9 и краткое изложение аргументации главы 3 в воображаемом диалоге в §3.23. Одного лишь этого диалога достаточно для того, чтобы убедиться в полном неправдоподобии любого утверждения о том, что модель, основанная только на подобного рода принципах, может иметь какое-то отношение к

Добавить отзыв
ВСЕ ОТЗЫВЫ О КНИГЕ В ИЗБРАННОЕ

0

Вы можете отметить интересные вам фрагменты текста, которые будут доступны по уникальной ссылке в адресной строке браузера.

Отметить Добавить цитату