§4.5); эти волны суть рябь в самой структуре пустого пространства. Энергия, содержащаяся в полях взаимного притяжения двух нейтронных звезд, также является важной составляющей их динамики, каковую составляющую мы не можем игнорировать. Как раз такая разновидность энергии, «обитающая» в пустом пространстве, и является самой неуловимой из всех. Ее нельзя получить простым «сложением» локальных вкладов плотности энергии, ее даже нельзя локализовать в какой-либо конкретной области пространства-времени (см. НРК, с. 220—221). Возникает искушение соотнести столь же скользкие проблемы нелокальной энергии R-процедуры с аналогичными проблемами классической гравитации — сопоставить одни проблемы с другими в надежде разглядеть за ними логически связную общую картину.
Обеспечивают ли такую логическую связность выдвигаемые мною здесь предположения? Думаю, что со временем мы от них этого непременно добьемся, однако на настоящий момент четкой теоретической основы у нас пока нет. Все, впрочем, говорит за то, что в принципе эта грандиозная задача вполне решаема. В самом деле, как мы уже отмечали ранее, процесс редукции можно сравнить с распадом нестабильной частицы или ядра атома. Представьте себе суперпозицию состояний объекта в двух различных положениях как своего рода нестабильное ядро, распадающееся по истечении некоего характеристического времени «полураспада» на какие-то более стабильные продукты. Аналогичным образом суперпозиция положений объекта — нестабильное квантовое состояние — переходит по истечении некоего характеристического «времени жизни» (определяемого, в грубом приближении, величиной, обратной гравитационной энергии разделения) в состояние стабильное, когда объект оказывается либо в одном положении, либо в другом, что дает нам две возможные формы распада.
Согласно принципу неопределенности Гейзенберга, время жизни (или период полураспада) частицы или ядра атома обратно незначительной
Наконец, остаются еще два важных вопроса, представляющие для нас в рамках настоящего исследования особый интерес. Первый: каким образом подобные соображения могут помочь нам понять принципы функционирования
7. Квантовая теория и мозг
7.1. Макроскопическая квантовая процедура в работе мозга
Согласно общепринятой точке зрения, понимание (истинное или кажущееся) работы мозга следует искать в рамках классической физики. Считается, что передаваемые по нервам сигналы суть феномены типа «есть или нет», точно так же, как токи в электронных цепях компьютера — они
Отсюда непосредственно следует, что с точки зрения наблюдателя любой существенный процесс в мозге либо «происходит», либо «не происходит». Странные
Однако такого мнения придерживаются далеко не все. В частности, известный нейрофизиолог Джон Экклз указывал на важную роль квантовых эффектов в синаптической передаче (см., например, [18] и [105]). По предположению Экклза, квантовая активность сосредоточена в так называемой пресинаптической везикулярной сетке — паракристаллической гексагональной структуре в пирамидальных клетках мозга. Другие ученые (включая и меня, см. НРК, с. 400—401 и [291]), экстраполируя тот факт, что светочувствительные клетки сетчатки (которая формально является частью мозга) способны реагировать на чрезвычайно слабый свет (буквально несколько фотонов, [194]) — при определенных обстоятельствах такая клетка может зарегистрировать даже
Поскольку квантовые эффекты действительно могут инициировать в мозге процессы гораздо более