§4.5); эти волны суть рябь в самой структуре пустого пространства. Энергия, содержащаяся в полях взаимного притяжения двух нейтронных звезд, также является важной составляющей их динамики, каковую составляющую мы не можем игнорировать. Как раз такая разновидность энергии, «обитающая» в пустом пространстве, и является самой неуловимой из всех. Ее нельзя получить простым «сложением» локальных вкладов плотности энергии, ее даже нельзя локализовать в какой-либо конкретной области пространства-времени (см. НРК, с. 220—221). Возникает искушение соотнести столь же скользкие проблемы нелокальной энергии R-процедуры с аналогичными проблемами классической гравитации — сопоставить одни проблемы с другими в надежде разглядеть за ними логически связную общую картину.

Обеспечивают ли такую логическую связность выдвигаемые мною здесь предположения? Думаю, что со временем мы от них этого непременно добьемся, однако на настоящий момент четкой теоретической основы у нас пока нет. Все, впрочем, говорит за то, что в принципе эта грандиозная задача вполне решаема. В самом деле, как мы уже отмечали ранее, процесс редукции можно сравнить с распадом нестабильной частицы или ядра атома. Представьте себе суперпозицию состояний объекта в двух различных положениях как своего рода нестабильное ядро, распадающееся по истечении некоего характеристического времени «полураспада» на какие-то более стабильные продукты. Аналогичным образом суперпозиция положений объекта — нестабильное квантовое состояние — переходит по истечении некоего характеристического «времени жизни» (определяемого, в грубом приближении, величиной, обратной гравитационной энергии разделения) в состояние стабильное, когда объект оказывается либо в одном положении, либо в другом, что дает нам две возможные формы распада.

Согласно принципу неопределенности Гейзенберга, время жизни (или период полураспада) частицы или ядра атома обратно незначительной неопределенности в массе-энергии исходной частицы. (Например, массу нестабильного ядра полония-210, испускающего в процессе распада α-частицу и превращающегося в свинец, точно определить невозможно, при этом неопределенность имеет порядок величины, обратной периоду полураспада — в данном случае, около 138 суток, — что дает для полония неопределенность массы всего лишь около 10—34 обшей массы ядра! Для отдельных нестабильных частиц, впрочем, неопределенность составляет существенно большую долю массы.) Таким образом, «распад», сопровождающий процесс редукции, также должен предполагать существенную неопределенность энергии исходного состояния. Эта неопределенность, согласно настоящему предположению, обусловлена, по большей части, неопределенностью собственной гравитационной энергии суперпозиции состояний. Собственная же гравитационная энергия включает в себя ту самую эфемерную нелокальную энергию поля, которая уже послужила причиной стольких неприятностей в общей теории относительности и которую нельзя получить простым сложением локальных вкладов плотности энергии. Кроме того, имеется тут и существенная неопределенность в сопоставлении друг другу точек различных пространственно-временных геометрий в суперпозиции, что мы отмечали в §6.10. Если допустить, что существенная «неопределенность» энергии состояний в суперпозиции представлена именно этим гравитационным вкладом, то результат такого допущения вполне согласуется с предсказанным выше временем жизни этого состояния. Таким образом, предлагаемая мною схема позволяет, по всей видимости, убедиться в наличии четкой связи между двумя энергетическими проблемами и по крайней мере обещает возможность построения на основе этих идей вполне непротиворечивой теории.

Наконец, остаются еще два важных вопроса, представляющие для нас в рамках настоящего исследования особый интерес. Первый: каким образом подобные соображения могут помочь нам понять принципы функционирования мозга? И второй: есть ли основания (физические) ожидать, что такому гравитационно индуцированному процессу редукции окажется свойственна невычислимость (некоего соответствующего вида)? В следующей главе мы увидим, что тут открываются кое-какие весьма захватывающие возможности.

7. Квантовая теория и мозг

7.1. Макроскопическая квантовая процедура в работе мозга

Согласно общепринятой точке зрения, понимание (истинное или кажущееся) работы мозга следует искать в рамках классической физики. Считается, что передаваемые по нервам сигналы суть феномены типа «есть или нет», точно так же, как токи в электронных цепях компьютера — они либо есть, либо их нет, здесь не бывает тех таинственных суперпозиций альтернативных вариантов, что характерны для квантовой физики. Хотя на фундаментальном уровне квантовые эффекты, вероятно, играют определенную роль, биологи в большинстве своем придерживаются мнения, что при рассмотрении макроскопических следствий примитивных квантовых закономерностей необходимости выходить за классические рамки нет. Химические силы, управляющие межатомными и межмолекулярными взаимодействиями, и впрямь имеют квантовомеханическое происхождение, и именно химические взаимодействия определяют по большей части поведение нейромедиаторов, передающих сигналы от одного нейрона к другому через узкие промежутки между ними (так называемые синаптические щели). Аналогичным образом, потенциалы действия, физически контролирующие передачу нервных импульсов, имеют предположительно квантовомеханическую природу. И все же мы, как правило, допускаем, что и поведение отдельных нейронов, и их взаимодействие вполне адекватно моделируются классическим средствами. Соответственно, широко распространено мнение, что модель физической деятельности мозга как целого следует строить по классическим «правилам», не обращая особого внимания на тонкие и загадочные эффекты квантовой физики.

Отсюда непосредственно следует, что с точки зрения наблюдателя любой существенный процесс в мозге либо «происходит», либо «не происходит». Странные суперпозиции квантовой теории, допускающие ситуации, когда процесс одновременно «происходит» и «не происходит», — и снабженные соответствующими комплексными весовыми коэффициентами — естественно, в расчет не принимаются. Мы еще можем согласиться с тем, что на некоем субмикроскопическом уровне подобные квантовые суперпозиции «действительно» имеют место, однако на уровне макроскопическом, по нашему глубокому убеждению, характерные для таких квантовых феноменов эффекты интерференции сколько-нибудь существенной роли играть просто не могут. Следовательно, любые такие суперпозиции уместно рассматривать как статистические эффекты, а классическое моделирование функционирования мозга оказывается с практической точки зрения (и снова FAPP!) целиком и полностью удовлетворительным.

Однако такого мнения придерживаются далеко не все. В частности, известный нейрофизиолог Джон Экклз указывал на важную роль квантовых эффектов в синаптической передаче (см., например, [18] и [105]). По предположению Экклза, квантовая активность сосредоточена в так называемой пресинаптической везикулярной сетке — паракристаллической гексагональной структуре в пирамидальных клетках мозга. Другие ученые (включая и меня, см. НРК, с. 400—401 и [291]), экстраполируя тот факт, что светочувствительные клетки сетчатки (которая формально является частью мозга) способны реагировать на чрезвычайно слабый свет (буквально несколько фотонов, [194]) — при определенных обстоятельствах такая клетка может зарегистрировать даже один- единственный фотон [17], — предположили, что и в самом мозге могут содержаться нейроны, также являющиеся, по сути своей, квантовыми «детекторами».

Поскольку квантовые эффекты действительно могут инициировать в мозге процессы гораздо более

Добавить отзыв
ВСЕ ОТЗЫВЫ О КНИГЕ В ИЗБРАННОЕ

0

Вы можете отметить интересные вам фрагменты текста, которые будут доступны по уникальной ссылке в адресной строке браузера.

Отметить Добавить цитату