эффекте «наклона» световых конусов (§4.4), уникальном свойстве физического феномена гравитации. Можно, таким образом, предположить, что ожидаемая модификация основных принципов квантовой теории явится результатом ее закономерного (и окончательного) объединения с общей теорией относительности Эйнштейна.

Впрочем, большинство физиков, похоже, не склонны допускать возможность того, что для обеспечения успеха подобного союза модификации следует подвергнуть именно квантовую теорию. Модификации, по их мнению, требует сама теория Эйнштейна. Они указывают (и, надо сказать, не без оснований) на то, что в классической общей теории относительности хватает и своих проблем, поскольку она предполагает существование пространственно-временных сингулярностей — таких, например, как черные дыры и собственно Большой Взрыв, — где кривизна пространства достигает бесконечности, а сами понятия пространства и времени вообще теряют смысл (см. НРК, гл. 7). Я нисколько не сомневаюсь, что в процессе слияния двух теорий нам предстоит модифицировать и общую теорию относительности. Равно как не вызывает сомнения и то, что такая модификация поможет нам лучше понять, что же в действительности происходит в тех областях, которые мы сегодня называем «сингулярностями». Но это отнюдь не освобождает квантовую теорию от необходимости пересмотра. В §4.5 мы могли убедиться, что общая теория относительности исключительно точна — ничуть не менее точна, чем та же квантовая теория. Когда мы, наконец, сумеем должным образом эти две теории объединить, большая часть физических основ как теории Эйнштейна, так и квантовой теории непременно войдет в полученную в результате общую теорию, причем в неизменном виде.

Тем не менее, многие из тех, кто мог бы, в принципе, с вышесказанным согласиться, все не унимаются: соответствующие масштабы длины, в которых способна действовать какая бы то ни было форма квантовой гравитации, совершенно не годятся для решения проблемы квантового измерения. В самом деле, масштаб длины, характерный для квантовой гравитации (так называемая планковская длина), составляет 10—33 см, что даже меньше (где-то на 20 порядков) диаметра ядерной частицы. Нас строго спрашивают, каким же это таким образом физические взаимодействия на столь крохотных расстояниях могут пролить свет на проблему измерения, которая как-никак имеет дело с феноменами уровня, пограничного (по меньшей мере) с макроскопическим. Все эти вопросы и возражения вызваны только и исключительно неверным пониманием применения идеи квантовой гравитации к данному случаю. Масштаб 10—33 см имеет к проблеме квантового измерения самое непосредственное отношение, но не в том смысле, какой первым делом приходит в голову.

Рассмотрим ситуацию, аналогичную той, в какой оказалась шрёдингерова кошка, — аналогичную тем, что здесь мы также попытаемся получить состояние линейной суперпозиции двух макроскопически различимых альтернатив. Пример такой ситуации представлен на рис. 6.4: фотон падает на полупрозрачное зеркало и оказывается в результате в состоянии линейной суперпозиции пропущенного и отраженного состояний. Пропущенная часть волновой функции фотона активирует (или способна активировать) устройство, которое перемещает некий макроскопический массивный сферический объект (не кошку) из одного пространственного положения в другое. До тех пор, пока действует шрёдингерова эволюция U, «местоположение» объекта определяется квантовой суперпозицией состояний «объект на прежнем месте» и «объект переместился на новое место». Как только в действие вступает редукция R, рассматриваемая как реальный физический процесс, объект скачкообразно занимает либо одно положение, либо другое — т.е. происходит собственно «измерение». Идея заключается в том, что, как и в ГРВ-теории, процесс этот является целиком и полностью объективным и физическим и происходит всякий раз, когда масса объекта (или расстояние, на которое он перемещается) достигает достаточной величины. (В частности, этот процесс никоим образом не зависит от того, «воспринимает» ли перемещение объекта или отсутствие такового некое случайно оказавшееся поблизости обладающее сознанием существо.) Допустим, что устройство, которое регистрирует прибытие фотона и перемещает объект, само по себе достаточно мало и может рассматриваться исключительно квантовомеханически, а измерению подвергается только лишь сферический массивный объект. В крайнем случае, мы можем просто-напросто вообразить, что объект установлен настолько неустойчиво, что силы удара одного-единственного фотона вполне достаточно для того, чтобы вызвать значительное его смещение.

Рис. 6.4. Оставив в покое кошку, выберем в качестве предмета измерения движение сферического макроскопического объекта. Насколько велик или массивен должен быть объект, или насколько далеко он должен переместиться для того, чтобы произошла редукция R?

Применив стандартные U-процедуры квантовой механики, находим, что состояние фотона после его столкновения с зеркалом складывается из двух компонентов в очень разных положениях. Один из компонентов оказывается далее сцеплен с устройством и в конечном счете со сферическим объектом, т.е. получаем квантовое состояние, представляющее собой линейную суперпозицию двух различных местоположений объекта. Объект имеет собственное гравитационное поле, которое также следует учесть в этой суперпозиции. Таким образом, в состояние добавляется суперпозиция двух различных гравитационных полей. Согласно теории Эйнштейна, отсюда следует, что наша суперпозиция охватывает две различные пространственно-временные геометрии! Закономерно возникает вопрос: существует ли точка, в которой эти две геометрии расходятся настолько, что становятся неприменимыми правила квантовой механики, в результате чего Природа прекращает «укладывать» в суперпозицию две разные геометрии и выбирает из них какую-то одну — т.е. физически осуществляет некую R-подобную процедуру редукции?

Дело в том, что мы не имеем ни малейшего понятия, как поступать с линейными суперпозициями состояний в тех случаях, когда эти самые состояния включают в себя различные пространственно- временные геометрии. На этот счет «стандартная теория» может порадовать нас лишь фундаментальным пробелом: в случае существенного различия между пространственно-временными геометриями мы не располагаем никакими абсолютными средствами, позволяющими сопоставить точку одной геометрии какой-либо определенной точке другой (поскольку эти геометрии представляют собой строго разделенные пространства), в связи с чем сама идея возможности построения суперпозиции материальных состояний в таких раздельных пространствах представляется крайне сомнительной.

Осталось только выяснить, когда же две геометрии становятся «существенно различными». Вот тут-то на сцену и выходит планковская длина 10—33 см. Рассуждение выглядит приблизительно так: для того чтобы произошла редукция, масштаб различия между этими геометриями должен составлять, в некотором подходящем смысле, величину порядка 10—33 см или более. Можно попробовать, например, представить себе (см. рис. 6.5), что две различные геометрии стремятся, как правило, слиться в одну, однако когда мера их различия становится для такого масштаба слишком велика, происходит редукция R — и вместо того, чтобы поддерживать суперпозицию, предполагаемую эволюцией U, Природа вынуждена выбирать какую-то одну из имеющихся геометрий.

Рис. 6.5. Планковская длина 10—33 см и редукция квантового состояния. Идея заключается примерно в следующем: редукция происходит тогда, когда разница между состояниями в суперпозиции подразумевает перемещение достаточно большой массы на достаточно большое расстояние (такой массы и на такое расстояние, что различие между соответствующими пространствами-временами составляет величину порядка 10—33 см).

Какой масштаб массы (или расстояния, на которое переместится объект) соответствует столь малому изменению в геометрии пространства-времени? Вообще говоря, именно благодаря малости гравитационных эффектов масштаб этот оказывается величиной довольно-таки значительной и вполне годится на роль

Добавить отзыв
ВСЕ ОТЗЫВЫ О КНИГЕ В ИЗБРАННОЕ

0

Вы можете отметить интересные вам фрагменты текста, которые будут доступны по уникальной ссылке в адресной строке браузера.

Отметить Добавить цитату