демаркационной линии между квантовым и классическим уровнями. Для придания картине большей наглядности, необходимо еще сказать несколько слов о так называемых абсолютных (или планковских) единицах.
Идея (первоначально[48] предложенная Максом Планком (1906) [308] и доведенная до блеска Джоном А. Уилером (1975) [383]) заключается в том, что три наиболее фундаментальные постоянные Вселенной — скорость света c, постоянная Планка (разделенная на 2π) ħ и ньютоновская гравитационная постоянная G — используются в качестве единиц для преобразования всех физических мер в чистые (безразмерные) числа. Для этого единицы длины, массы и времени необходимо выбрать таким образом, чтобы каждая из трех вышеупомянутых постоянных стала равна единице:
c = 1, ħ = 1, G = 1.
Планковская длина 10—33 см, которая в обычных единицах выражается в виде (Għ/c3)1/2, принимает при этом простое значение 1 и оказывается, таким образом, абсолютной единицей длины. Соответствующая единица времени, т.е. время, за которое свет пройдет расстояние, равное планковской длине, называется планковским временем ((Għ/c5)1/2) и равна приблизительно 10—43 секунд. Существует также абсолютная единица массы, так называемая планковская масса ((ħc/G)1/2), равная 2 × 10 —5 г — масса, чрезвычайно большая с точки зрения масштаба обычных квантовых феноменов, однако весьма незначительная в нашем повседневном понимании — примерно столько весит блоха.
Понятно, что в классическом мире единицы эти не очень удобны — за исключением, разве что, планковской массы, — однако они оказываются как нельзя более полезными при рассмотрении эффектов, предположительно связанных с квантовой гравитацией. Ниже приведены некоторые из наиболее значимых физических величин, выраженные в абсолютных единицах (очень приблизительно):
секунда = 1,9 × 1043
сутки = 1,6 × 1048
год = 5,9 × 1050
метр = 6,3 × 1034
сантиметр = 6,3 × 1032
микрон =6,3 × 1028
ферми («радиус сильного взаимодействия») = 6,3 × 1019
масса нуклона = 7,8 × 10—20
грамм = 4,7 × 104
эрг = 5,2 × 10—17
кельвин = 4 × 10—33
плотность воды = 1,9 × 10—94.
В этом параграфе я сформулирую новый критерий{82} гравитационной редукции вектора состояния, существенно отличный от того, что был предложен в НРК, но близкий к некоторым идеям, высказанным в последнее время Диози и другими учеными. Причины, побудившие меня к поискам связи между R-процедурой и гравитацией, остаются в силе, однако моя теперешняя гипотеза получила с тех поп дополнительную теоретическую поддержку с другой стороны. Более того, мне удалось избавиться от некоторых концептуальных проблем, присущих прежнему варианту, и сделать его более удобным для применения. В НРК я предлагал отыскать критерий, который позволял бы определить, когда два состояния (каждое со своим гравитационным полем — т.е. пространством-временем) оказываются слишком различными для того, чтобы продолжать сосуществовать в квантовой линейной суперпозиции. Соответственно, на этом этапе должна была происходить редукция R. Нынешняя идея несколько отличается от прежней. Мы больше не ищем некую абсолютную меру гравитационной разницы между состояниями, чтобы выяснить с ее помощью, в какой момент состояния разойдутся настолько, что суперпозиция станет невозможна. Вместо этого, мы рассматриваем суперпозицию сколь угодно разных состояний как нестабильную — в том смысле, в каком нестабильно, например, ядро урана — и вводим величину скорости редукции вектора состояния, каковая скорость определяется как раз степенью разности состояний. Чем больше разность, тем выше скорость редукции.
Для наглядности применим новый критерий сначала к конкретной ситуации, описанной в §6.10, хотя его несложно обобщить и на многие другие случаи. Нас, в частности, интересует энергия, необходимая в упомянутой ситуации для того, чтобы сдвинуть одну копию объекта относительно другой, с учетом лишь гравитационных эффектов. Итак, мы представляем себе, что два объекта (две массы) первоначально занимают один и тот же объем пространства (см. рис. 6.6); затем одна копия объекта начинает медленно удаляться от другой, уменьшая по мере движения степень взаимопроникновения, пока, наконец, не произойдет полное их разделение, т.е., в контексте рассматриваемой ситуации, пока не будет достигнута суперпозиция состояний. Взяв величину, обратную затраченной на эту операцию гравитационной энергии (в абсолютных единицах[49]), мы получим приближенное время (также в абсолютных единицах), по истечении которого произойдет редукция состояния, в результате которой объект из состояния суперпозиции самопроизвольно и скачкообразно перейдет в то или иное локализованное состояние.
Рис. 6.6. Для того чтобы найти время редукции ħ/E, представим себе объект в виде двух расходящихся копий и вычислим энергию E, затрачиваемую на такое расхождение, учитывая лишь гравитационное притяжение объектов.
Если в качестве объекта был выбран шар с массой m и радиусом a, то для энергии мы получим величину порядка m2/a. Вообще говоря, действительное значение энергии зависит еще и от того, на какое расстояние перемещается объект, однако в данном случае это расстояние очень незначительно, поскольку в окончательной конфигурации две копии объекта