как комбинации вероятностей состояний, допускают множество альтернативных интерпретаций. В частности, поскольку зеркало полупрозрачно, мы имеем здесь в точности такую же матрицу плотности, как и та, какую мы получили выше для частицы со спином 1/2:

D = 1/2 | ΨД〉〈ΨД| + 1/2 | ΨН〉〈ΨН|.

Можно записать ее иначе; скажем, так:

D = 1/2 | ΨP〉〈ΨP| + 1/2 | ΨQ〉〈ΨQ|,

где |ΨP〉 и | ΨQ〉 — два других возможных ортогональных состояния детектора (что представляет собой, надо сказать, совершенную нелепость с точки зрения классической физики), причем

|ΨP〉 = (| ΨД〉 + | ΨН〉)/√2 и | ΨQ〉 = (| ΨД〉 - | ΨН〉)/√2.

Тот факт, что наш физик полагает, будто состояние его детектора описывается матрицей плотности D, никак не объясняет, почему он всегда обнаруживает детектор либо в состоянии ДА (что соответствует | ΨД〉), либо в состоянии НЕТ (|ΨН〉). Потому что совершенно такую матрицу плотности он получил бы, если состояние системы представляло собой равновесную вероятностную комбинацию, по классическим меркам, нелепостей | ΨP〉 и | ΨQ〉 (описывающих, соответственно, квантовые линейные суперпозиции «ДА плюс НЕТ» и «ДА минус НЕТ»)!

Для того, чтобы подчеркнуть физическую абсурдность состояний, подобных | ΨP〉 и | ΨQ〉, в случае макроскопического детектора, рассмотрим «измерительное устройство», состоящее из ящика и помещенной внутрь него кошки, причем ящик снабжен неким устройством, убивающим кошку, если детектор регистрирует фотон (в состоянии 〉), если же детектор ничего не регистрирует (фотон в состоянии 〉), то кошка остается жива — это измерительное устройство широко известно под названием шрёдингерова кошка (см. §5.1 и рис. 6.3). Результат ДА представляется здесь как «кошка мертва», а результат НЕТ — как «кошка жива». Однако из одного лишь того, что нам известно, что матрица плотности имеет вид равновесной комбинации этих двух состояний, вовсе не следует, что кошка либо мертва, либо жива (с равной вероятностью), так как эта же кошка может также быть (с равной вероятностью) либо «мертва плюс жива», либо «мертва минус жива»! Сама по себе матрица плотности ничего не говорит о том, что эти последние классически абсурдные возможности в известном нам реальном мире никогда не реализуются. Как и во «множественно мировом» подходе к объяснению R, нам, похоже, вновь предлагается поразмыслить над тем, какого рода состояния мы намерены позволить воспринимать обладающему сознанием наблюдателю (в данном случае, нашему «физику»). С чего мы, собственно говоря, взяли, что состояния вроде «кошка мертва плюс кошка жива» совершенно и абсолютно недоступны восприятию некоего сознательного внешнего[46] наблюдателя?

Мне могут возразить, что «измерение» детектора, которое наш физик намерен произвести, состоит всего лишь в том, чтобы узнать, какой результат из двух (ДА или НЕТ) этот самый детектор зафиксировал — или, как в примере с кошкой, выяснить, мертва она или жива. (Вспомним и о наблюдателе из предыдущего параграфа, который собирался всего лишь определить, вверх направлена ось спина правой частицы или вниз.) Для такого измерения матрица плотности и в самом деле дает верные значения вероятностей, в каком бы виде мы ее ни представили. А вот тут начинаются проблемы. Почему мы должны считать таким измерением простой взгляд на кошку? В U-эволюции квантовой системы нет ни единого правила, запрещающего нашему сознанию в процессе «разглядывания» и, как следствие, восприятия квантовой системы осознавать комбинации вроде «кошка мертва плюс кошка жива». Так! Здесь мы, кажется, уже проходили. Что такое сознание? Как на самом деле устроен наш мозг? Ведь первой и самой очевидной причиной поисков FAPP-объяснения процедуры R как раз и было желание избежать необходимости связываться с такого рода вопросами!

Кто-то скажет: все дело в том, что мы выбрали для нашего примера нехарактерный особый случай с двумя равными вероятностями 1/2 и 1/2 (случай «вырожденных собственных значений»). Только в таких ситуациях матрица плотности допускает более одного представления в виде взвешенной вероятностной комбинации взаимно ортогональных альтернатив. Это ограничение не существенно, поскольку для интерпретации матрицы плотности как комбинации вероятностей ортогональность альтернатив непременным требованием не является. Более того, как показали в своей недавней работе Хьюстон, Йожа и Вуттерс [210], в ситуациях, подобных вышеописанным (т.е. там, где матрица плотности вводится потому, что рассматриваемая система сцеплена с какой-то другой изолированной системой), для любой комбинации вероятностей альтернативных состояний, выбранной вами для составления матрицы плотности, всегда найдется измерение, выполнимое в той самой изолированной системе, которое даст в точности такое же представление матрицы плотности. Как бы то ни было, одно то, что неоднозначность возникает уже в случае равных вероятностей, ясно показывает, что для описания действительных альтернативных состояний нашего детектора матричного представления недостаточно.

Итак, одно лишь знание матрицы плотности D не дает никаких оснований полагать, что система представляет собой вероятностную комбинацию тех самых состояний, которые эту конкретную матрицу D составляют. Точно такую же матрицу D можно получить и из множества других самых различных комбинаций состояний, большая часть которых окажутся совершенно «абсурдными» с точки зрения здравого смысла. Более того, такая неоднозначность свойственна любой матрице плотности, какую ни возьми.

Добавить отзыв
ВСЕ ОТЗЫВЫ О КНИГЕ В ИЗБРАННОЕ

0

Вы можете отметить интересные вам фрагменты текста, которые будут доступны по уникальной ссылке в адресной строке браузера.

Отметить Добавить цитату