и так далее. Из того, что вероятности всех альтернативных вариантов должны в сумме давать единицу, можно вывести важное свойство, справедливое для любой матрицы плотности:
СЛЕД(
Как же использовать матрицу плотности для вычисления вероятностей, результатов измерения? Рассмотрим сначала простой случай примитивного измерения. Спросим, находится ли система в физическом состоянии
Вероятность
где произведение DE само представляет собой объект, подобный матрице плотности. Оно вычисляется с помощью несложных алгебраических правил, необходимо лишь соблюдать порядок «умножений». Например, для вышеприведенной двучленной суммы
Члены 〈
СЛЕД(
Напомню (см. §5.13), что величины
В случае более общего измерения типа «да/нет» рассуждение в целом не изменяется, только вместо определенного выше проектора «£» используется проектор более общего вида
где
Вероятность получения ответа ДА при измерении, определяемом проектором
Отметим важный факт: искомую вероятность можно вычислить, если нам всего-навсего известны матрица плотности и проектор, описывающий измерение. Нам не нужно знать, каким именно образом из индивидуальных состояний была составлена матрица плотности. Полная вероятность получается сама собой в виде соответствующей комбинации классических и квантовых вероятностей, а нам не приходится беспокоиться, какая ее часть откуда взялась.
Рассмотрим повнимательнее это любопытное переплетение классических и квантовых вероятностей в матрице плотности. Допустим, например, что у нас имеется частица со спином 1/2, и мы абсолютно не уверены, в каком спиновом состоянии (нормированном) она в данный момент пребывает — | ↑〉 или |↓〉. Предположив, что соответствующие вероятности этих состояний равны 1/2 и 1/2, построим матрицу плотности