состояние |ψ〉 никак не может не учитывать возможность того, что нам вдруг взбредет в голову измерить его посредством вышеупомянутого примитивного измерения, того самого измерения, ДА-пространство которого состоит исключительно из кратных вектора |ψ〉. В данном случае таким измерением является измерение спина в направлении →. На это измерение система должна давать уверенный ответ ДА, а этого не может гарантировать никакое состояние спина атома, кроме |ψ〉 = | →〉.

Можно отыскать множество самых разнообразных физических ситуаций, в которых подобное примитивное измерение окажется практически неосуществимым. И все же стандартные правила квантовой теории предполагают, что в принципе такие измерения возможны. Если же мы полагаем, что в случае некоторых «достаточно сложных» разновидностей состояний | ψ〉 примитивные измерения невозможны в принципе, то нам придется пересмотреть самые основы квантовой теории. Может быть, их и впрямь стоит пересмотреть (некоторые конкретные шаги в этом направлении я предложу в §6.12). Следует, впрочем, понимать, какого рода пересмотр потребуется, если мы и впредь намерены отрицать объективные различия между разными квантовыми состояниями или, что одно и то же, объективную реальность вектора состояния |ψ〉 в некотором строгом физическом смысле (пусть и с точностью до коэффициента пропорциональности).

В качестве «минимального» пересмотра, затрагивающего лишь теорию измерения, часто предлагают ввести так называемые правила суперселекции{77}, которые и в самом деле эффективно отрицают возможность выполнения определенных типов примитивных измерений системы. Мне не хочется рассматривать здесь эти правила в подробностях, так как ни одно подобное предложение, насколько мне известно, не дошло в своем развитии до той стадии, на которой можно было бы говорить о формировании сколько-нибудь связной общей позиции в отношении проблемы измерения. Подчеркну лишь, что даже минимальный пересмотр подобного рода все равно остается пересмотром — и лишь подтверждает наличие насущной необходимости в пересмотре теории в целом.

В заключение, думаю, следует упомянуть о том, что существует и множество иных подходов к квантовой механике, которые хоть и не противоречат предсказаниям традиционной теории в принципе, но все же дают «картины реальности», так или иначе отличные от той реальности, где вектор состояния | ψ〉 «принимают всерьез», полагая, что он эту реальность и представляет. Среди них — пилотно-волновая теория Луи де Бройля [77] и Дэвида Бома [33], нелокальная теория, согласно которой существуют объекты, эквивалентные одновременно волновым функциям и системам классических частиц, причем и те, и другие полагаются в данной теории «реальными». (См. также [34].) Другие точки зрения (вдохновленные Ричардом Фейнманом и его подходом к квантовой теории [118]) оперируют целыми «историями» возможного поведения — согласно этим точкам зрения, истинная картина «физической реальности» несколько отличается от той, которую дает обыкновенный вектор состояния | ψ〉. Аналогичной общей позиции, которая, впрочем, учитывает еще и возможность, по сути, многократных частичных измерений (в соответствии с анализом, предпринятым в [4]), придерживаются авторы работ [174], [279] и [141]. Было бы неуместно, как мне кажется, углубляться здесь в обсуждение этих разнообразных альтернативных точек зрения (хотя следует все же упомянуть о том, что формализм матриц плотности, который вводится в следующем параграфе, играет в некоторых из этих теоретических построений не последнюю роль — как и в операторном подходе Хаага [179]). Скажу лишь, что, хотя многое в этих процедурах представляет значительный интерес и обладает некоторой вдохновляющей оригинальностью, я все же совершенно не убежден, что с их помощью можно действительно решить проблему измерения. Разумеется, я могу и ошибаться, но это покажет лишь время.

6.4. Матрица плотности

Многие физики, полагая себя людьми практичными, вопросами «реальности» вектора | ψ〉 не интересуются. От |ψ〉 им нужно лишь одно — возможность вычислять с его помощью вероятности того или иного дальнейшего физического поведения объекта. Часто бывает так, что состояние, выбранное изначально для представления физической ситуации, приобретает под действием эволюции чрезвычайную сложность, а его сцепленности с элементами окружения становятся настолько запутанными, что на практике совершенно невозможно проследить за эффектами квантовой интерференции, отличающими такое состояние от множества других ему подобных. Все уверения в том, что явившийся результатом данной конкретной эволюции вектор состояния сколько-нибудь более реален, нежели прочие, на практике от него неотличимые, наши «практичные» физики, без сомнения, сочтут абсолютно лишенными смысла. В самом деле, скажут они, любой отдельный вектор состояния, пригодный для описания «реальности», всегда можно заменить подходящей вероятностной комбинацией векторов состояния. Если применение процедуры U к некоему вектору состояния, представляющему начальное состояние системы, дает результат, с практической точки зрения (FAPP-подход Белла) неотличимый от того, что был бы получен с помощью такой вот вероятностной комбинации векторов состояния, то вероятностная комбинация достаточно хороша для описания мира и отыскивать U-эволюционировавший вектор состояния нужды нет.

Часто утверждают, что с такими же мерками можно подходить и к процедуре R — по крайней мере, на практике (все тот же FAPP). Двумя параграфами ниже мы попытаемся найти ответ на вопрос, можно ли в самом деле разрешить кажущийся U/R-парадокс одними лишь этими методами. Однако прежде я хотел бы рассказать подробнее о процедурах, принятых в стандартных FAPP-подходах к объяснению R-процесса (реального или кажущегося).

Ключевым в этих процедурах является математический объект, называемый матрицей плотности. Понятие матрицы плотности играет в квантовой теории весьма важную роль, и именно она, а не вектор состояния, лежит в основе большинства стандартных математических описаний процесса измерения. Центральную роль отводит матрице плотности и мой, менее традиционный, подход, особенно в том, что касается ее связи со стандартными FAPP-процедурами. По этой причине нам, к сожалению, придется углубиться в математический формализм квантовой теории несколько далее, нежели было необходимо прежде. Надеюсь, что читателя-неспециалиста такая перспектива не отпугнет. Даже при отсутствии полного понимания, мне думается, любому читателю будет полезно хотя бы бегло просматривать математические рассуждения по мере их появления — несомненно, со временем придет и осмысление. Это стало бы существенным подспорьем для понимания некоторых из дальнейших аргументов и тонкостей, сопровождающих поиски ответа на вопрос, почему нам действительно и насущно необходима усовершенствованная теория квантовой механики.

В отличие от отдельного единичного вектора состояния, матрицу плотности можно рассматривать как представление комбинации вероятностей нескольких возможных альтернативных векторов состояния. Говоря о «комбинации вероятностей», мы подразумеваем лишь, что существует некоторая неопределенность в отношении действительного состояния системы, при этом каждому из возможных альтернативных векторов состояния поставлена в соответствие некоторая вероятность — самая обычная классическая вероятность, выраженная самым обычным вещественным числом. Однако матрица плотности вносит в это описание некоторую путаницу (заложенную изначально), поскольку не отличает классические вероятности, фигурирующие в вышеупомянутой взвешенной вероятностной комбинации, от вероятностей

Добавить отзыв
ВСЕ ОТЗЫВЫ О КНИГЕ В ИЗБРАННОЕ

0

Вы можете отметить интересные вам фрагменты текста, которые будут доступны по уникальной ссылке в адресной строке браузера.

Отметить Добавить цитату