где состояние |B〉 означает, что фотон регистрируется фотоэлементом, тогда как в состоянии |C〉 регистрации фотона не происходит. Отношение соответствующих вероятностей при этом равно |1|2 : |i| 2 = 1 : 1; т.е. вероятности каждого из двух возможных событий равны, и фотон активирует фотоэлемент с той же вероятностью, с какой и вовсе не попадает на него.

Рассмотрим несколько более сложный случай. Допустим, что мы не заменяем зеркало в правом нижнем углу фотоэлементом, а полностью блокируем один из лучей неким непрозрачным «фотонопоглощающим» препятствием — скажем, луч, соответствующий состоянию |D〉 фотона (см. рис. 5.13); при этом интерференция, имевшая место ранее, оказывается нарушена. Теперь, миновав последнее зеркало, фотон может перейти в состояние |G〉 (возможность | F〉 тоже пока никто не отменял) — однако лишь при условии, что не будет поглощен препятствием. Если препятствие поглощает фотон, то он вообще не дойдет до детекторов, ни в состоянии |F〉, ни в состоянии | G〉, ни в какой бы то ни было их комбинации. Если же поглощения не происходит, то последнего зеркала фотон достигнет, пребывая в «простом» состоянии —|E〉, которое после прохождения зеркала эволюционирует в —|F〉 - i|G〉. Таким образом, в конечном результате действительно присутствуют обе альтернативы — и |F〉, и | G〉.

Рис. 5.13. Если перекрыть луч |D〉 каким-либо препятствием, то детектор G также сможет зарегистрировать прибытие фотона (при условии, что этот фотон не будет раньше поглощен препятствием!).

В том случае, когда препятствие (в рассмотренной конкретной схеме) не поглощает фотон, комплексные весовые коэффициенты, соответствующие возможным состояниям | F〉 и |G〉, равны —1 и —i. Таким образом, отношение вероятностей равно |—1|2 : |—i|2, что опять дает одинаковые вероятности для обоих возможных событий — фотон активирует детектор в точке |F〉 с той же вероятностью, с какой он активирует детектор в точке | G〉.

Кроме того, само препятствие также следует считать «измерительным устройством» — коль скоро варианты «препятствие поглощает фотон» и «препятствие не поглощает фотон» мы рассматриваем как классические альтернативы, которым нельзя поставить в соответствие комплексные весовые коэффициенты. Даже если препятствие не устроено таким деликатным образом, что квантовое событие «поглощение препятствием фотона» порождает событие, наблюдаемое на классическом уровне, следует все же полагать, что такое устройство препятствия принципиально возможно. Существенным обстоятельством здесь является то, что в результате поглощения фотона некое значительное количество составляющего препятствие материала подвергается определенному, пусть и малому, возмущению — при этом практически невозможно собрать всю связанную с таким возмущением информацию, чтобы восстановить по ней сопутствующие эффекты интерференции, характеризующие квантовые феномены. Итак, препятствие (во всяком случае, в практическом смысле) следует рассматривать как объект классического уровня, эквивалентный измерительному устройству — вне зависимости от того, регистрирует оно поглощение фотона каким-либо практически наблюдаемым образом или нет. (К этому вопросу мы еще вернемся, см. §6.6.)

Учитывая вышесказанное, мы вольны воспользоваться «правилом квадратов модулей» и для вычисления вероятности того, что фотон и вправду окажется поглощен препятствием. Перед столкновением с препятствием фотон находится в состоянии i| D〉 - |E〉, причем поглощается лишь фотон в состоянии |D〉, тогда как в состоянии |E〉 поглощения не происходит. Отношение вероятности поглощения к вероятности не-поглощения равно | i|2 : |—1|2 = 1 : 1 — обе альтернативы и здесь равновероятны.

Можно произвести еще одну небольшую модификацию рассматриваемой системы: уберем препятствие для луча D, зеркало же в правом нижнем углу не будем заменять детектором, но «прикрутим» вместо этого к зеркалу некое особого рода измерительное устройство. Предположим, что чувствительность этого устройства такова, что оно способно регистрировать (т.е. выводить на классический уровень) воздействие, оказываемое на зеркало фотоном при отражении, каким бы малым это воздействие ни было; сигналом о регистрации воздействия пусть будет отклонение стрелки на циферблате нашего устройства (см. рис. 5.14). Здесь отклонение стрелки вызывается фотоном в состоянии |B〉, состояние же | C〉 никакого воздействия на стрелку не оказывает. Принимая фотон в состоянии |B〉 + i|C〉, устройство «коллапсирует волновую функцию» и интерпретирует суперпозицию либо как состояние |B〉 (стрелка отклоняется), либо как состояние |C〉 (стрелка остается неподвижной), причем вероятности обоих исходов одинаковы (поскольку |1|2 : |i|2 = 1 : 1). Таким образом, на этом этапе также имеет место процедура R. О дальнейшей судьбе фотона мы рассуждаем примерно так же, как мы делали это выше; при этом выясняется, что — как и в случае с препятствием — вероятности регистрации фотона детекторами F и G снова равны (причем независимо от того, отклонялась стрелка или нет). Для того чтобы фотон в данной схеме мог вызвать отклонение стрелки, зеркало в правом нижнем углу должно быть достаточно «подвижным», отсутствие же жесткого закрепления нарушает хрупкий порядок, необходимый для возникновения той «деструктивной интерференции» между двумя траекториями движения фотонов от точки A к точке G, благодаря которой фотон в исходном примере не регистрировался детектором G.

Рис. 5.14. Аналогичного эффекта можно достичь, поместив в правый нижний угол подвижное зеркало, снабженное неким детектором, который способен по движению зеркала определить, отразило оно фотон или нет. Интерференция здесь также оказывается нарушена, благодаря чему детектор в точке G получает возможность зарегистрировать прибытие фотона.

Читатель, должно быть, уже отметил некую досадную незавершенность всех наших рассуждений, выражающуюся в отсутствии ответа на вопрос «Когда (а главное, почему) квантовые правила переходят от квантового детерминизма комплексных весовых коэффициентов к классическим вероятностно-взвешенным недетерминированным альтернативам, каковой переход выражается математически в возведении в квадрат модулей соответствующих комплексных чисел?». Что есть такого в одних физических материальных образованиях — таких, например, как детекторы фотонов в точках F и G или зеркало в нижнем правом углу (или то же возможное препятствие для фотонов на пути луча D), — что делает их объектами классического уровня, в противоположность другим физическим объектам, скажем, фотонам, которые оказываются на квантовом уровне, и требуют поэтому совершенно иного с собой обращения? Только ли в том дело, что фотон — это система физически простая, что позволяет рассматривать его целиком как объект квантового уровня, тогда как детекторы и препятствия являются системами сложными, которые можно рассматривать лишь приближенно, в

Добавить отзыв
ВСЕ ОТЗЫВЫ О КНИГЕ В ИЗБРАННОЕ

0

Вы можете отметить интересные вам фрагменты текста, которые будут доступны по уникальной ссылке в адресной строке браузера.

Отметить Добавить цитату