«шрёдингеровом представлении» U задается уравнением Шрёдингера, которое характеризует скорость изменения квантового состояния (или волновой функции) во времени. Это квантовое состояние (обычно обозначаемое греческой буквой ψ, или так: |ψ〉) представляет собой полную взвешенную сумму (с комплексными весовыми коэффициентами) всех возможных альтернатив, доступных данной квантовой системе. Таким образом, для приведенного выше примера с двумя альтернативными положениями электрона квантовое состояние гр) записывается в виде следующей комбинации комплексных чисел:
|ψ〉 = w|A〉 + z|B〉,
где w и z — комплексные числа (причем хотя бы одно из них не равно нулю). Комбинацию w|A〉 + z|B〉 мы называем линейной суперпозицией состояний |A〉 и |B〉. Величина |ψ〉 (равно как и |A〉 или | B〉) часто называется вектором состояния. Квантовые состояния (или векторы состояния) могут записываться и в более общем виде — например, так:
|ψ〉 = u|A〉 + v|B〉 + w| C〉 + … + z|F〉,
где u, v, …, z — комплексные числа (причем хотя бы одно из них не равно нулю), а |A〉, | B〉, …, |F〉 символизируют различные возможные положения, которые может занимать частица (или какое-либо иное возможное свойство частицы — например, ее спиновое состояние; см. §5.10). Обобщая далее, можно допустить выражение волновой функции или вектора состояния в виде бесконечной суммы (поскольку число положений, которые может занимать точечная частица, бесконечно велико); впрочем, подобные случаи нас пока не занимают.
Здесь необходимо упомянуть об одной технической особенности квантового формализма. Дело в том, что значимыми являются только отношения комплексных весовых факторов. Подробнее об этом я расскажу позднее. А пока мы просто отметим, что для любого отдельно взятого вектора состояния |ψ〉 верно следующее: любое комплексное кратное u|ψ〉 (где u ≠ 0) описывает то же самое физическое состояние, что и |ψ〉. Таким образом, например, физические состояния uw|A〉 + uz| B〉 и w|A〉 + z|A〉 совершенно идентичны. Соответственно, физический смысл имеет отношение w : z, но не отдельные числа w и z.
Наиболее фундаментальным свойством уравнения Шрёдингера (а значит, и эволюции U) является его линейность. Иначе говоря, если у нас есть два состояния (скажем, | ψ〉 и |φ〉) и уравнение Шрёдингера, согласно которому по прошествии времени t состояния | ψ〉 и |φ〉 эволюционируют в новые состояния, соответственно, |ψ'〉 и | φ'〉, то любая линейная суперпозиция w| ψ〉 + z| φ〉 за то же время t неминуемо эволюционирует в суперпозицию w|ψ'〉 + z| φ'〉. Для обозначения эволюции за время t воспользуемся символом ⇝. Тогда линейность подразумевает следующее: если
|ψ〉 ⇝ |ψ'〉 и | φ〉 ⇝ |φ'〉,
то имеет место и эволюция
w|ψ〉 + z| φ〉 ⇝ w| ψ'〉 + z| φ'〉.
Это рассуждение применимо (разумеется) и к линейным суперпозициям трех и более индивидуальных квантовых состояний: например, состояние u| χ〉 + w| ψ〉 + z| φ〉 эволюционирует за время t в состояние u|χ'〉 + w| ψ'〉 + z| φ'〉, если каждое из состояний | χ〉, |ψ〉 и | φ〉 в отдельности эволюционирует за это же время, соответственно, в |χ'〉, |ψ'〉 и | φ'〉. Иными словами, эволюция всегда происходит так, словно каждый отдельно взятый компонент суперпозиции не «знает» о присутствии других. Можно сказать, что каждый отдельно взятый «мир», описываемый упомянутым компонентом, эволюционирует независимо от других, но всегда в соответствии с тем же уравнением Шрёдингера, что и другие. При этом комплексные весовые коэффициенты в суперпозиции, описывающей совокупное состояние, в процессе эволюции остаются неизменными.
Ввиду вышесказанного можно подумать, что суперпозиции и комплексные весовые коэффициенты не играют сколько-нибудь эффективной физической роли, поскольку эволюция отдельных состояний во времени происходит так, словно других состояний тут вовсе нет. Это заблуждение. Проиллюстрируем на примере, что может произойти с такой системой в реальности.
Рассмотрим случай падения света на полусеребрёное зеркало, т.е. на полупрозрачное зеркало, отражающее ровно половину падающего на него света и беспрепятственно пропускающее все остальное. По квантовой теории, свет образуют частицы, называемые фотонами. Вполне естественно будет предположить, что половина фотонов из падающего на полусеребрёное зеркало потока отражается от его поверхности, а половина проходит зеркало насквозь. Не тут-то было! Согласно все той же квантовой теории, при столкновении с поверхностью зеркала каждый отдельный фотон переходит в состояние суперпозиции отражения и пропускания. Если фотон находился до столкновения с зеркалом в состоянии |A〉, то после столкновения состояние фотона эволюционирует (в соответствии с U) в состояние, которое можно