первообразная функция, полученная из инобытийной путем исключения инобытия, и есть интеграл.

Интеграл количественно ничем не отличается от любой величины. Всякая величина может быть интегралом. Однако если употребляется такой термин, то, конечно, не для того, чтобы еще другим словом назвать то, что обычно называется величиной. Название «интеграл» указывает на происхождение величины, а не просто на самую величину в ее чисто количественном смысле. В понятии интеграла также мыслится процесс, и притом бесконечный процесс, как и в понятии производной; и это не может быть иначе, раз мы условились рассматривать не только инобытие в сфере бытия, но и бытие в сфере инобытия. В бытие тоже вносится момент инобытия, а именно бытие — в нашем случае первообразная функция — мыслится не само по себе, в своей полной непосредственности (тогда была бы просто арифметическая величина, и больше ничего), но в своем происхождении, в своей полученности из недр становящегося бытия.

Каким же образом можно получить из инобытия бытие, из дифференциала интеграл? Что тут за процесс происходит? Когда мы имеем производную и, следовательно, дифференциал функции, мы погружены в созерцание бесконечного процесса и фиксируем в нем твердые контуры закона, управляющего этим бесконечным процессом. Наша новая задача заключается в том, чтобы созерцать этот бесконечный процесс не в целях фиксации закона этого же самого инобытийного процесса, но в целях фиксации функции, еще не перешедшей ни в какое инобытийное становление. Мы продолжаем рассматривать эту становящуюся стихию, но фиксируем в ней не ее собственную закономерность, но изначальную функциональную закономерность, инобытие которой и привело к этой становящейся стихии. Соответственно с этим мы уже иначе должны расценивать самый процесс становления.

Когда мы искали закон инобытия, мы должны были скользить по самому инобытию, с тем чтобы пронаблюдать этот закон. В глубине этого распыления и появлялся его закон—в виде производной. В случае же, когда надо прийти к первообразному бытию, мы тоже скользим по инобытию, но, очевидно, не с целью разъединить и распылить, но с целью обобщить, так как первообразная функция перешла в производную именно благодаря распылению и становлению. Обратный процесс, следовательно, есть восстановление и объединение. Только этим путем мы можем вернуться к первообразной функции, потому что только этим путем мы и уходили от нее. Однако, как было недостаточно в первом случае видеть бесконечный процесс распыления, а нужно было еще узреть скрытый за ним и руководящий им закон инобытия (производную), так и здесь недостаточно одного простого суммирования и воссоединения распыленных моментов, а нужно стараться увидеть скрывающийся за этим закон этого объединения, закон этого суммирования, восстановляющего бытие в его первоначальной данности. Иначе мы потерялись бы в дебрях инобытия—и в первом, и во втором случае.

Но что же это за закон суммирования и воссоединения? Закон становления и распыления есть предел становления и распыления. Точно так же закон суммирования должен быть определенным пределом, который бы из бесконечности четко управлял этим процессом суммирования. Ясно, что таким пределом и является наша первообразная функция, потому что из нее и начался процесс становления, к ней и должно вернуться инобытие из своего бесконечного становления. Она—предел этого возвращения, т. е. предел суммирования всего распыленного. Это она видится в глубине восстановительного процесса и скрыто им управляет. Ее мы и должны найти, созерцая восстановительные пути инобытия.

Отсюда, интеграл есть, очевидно, предел суммы всех дифференциалов. Или, говоря пространнее, это есть предел бесконечно–большой суммы всех бесконечно–малых приращений функции.

Тут мы получаем уже более четкое определение интеграла, которое мы не можем получить, понимая интегрирование как действие, обратное дифференцированию. Только в определении интеграла как предела суммы всех дифференциалов мы обнаруживаем истинную восстановительную и синтетическую природу интеграла. Трактование интегрирования как действия, обратного дифференцированию, хотя оно вполне точно, не обладает такой выпуклостью, которую дает определение через суммирование.

К этому определению интеграла должно быть сделано несколько примечаний.

Прежде всего, как в анализе понятия производной, так и здесь мы должны получить основную стихию, в области которой разыгрываются эти понятия. Это — стихия становления, алогического становления, где мы находим полную неразличимость всех отдельных моментов, хотя они и даны как внеположные. Трактуя о бесконечно–малом, мы выдвигаем на первый план эту идею бесконечного процесса, где все отдельные моменты слиты в единый неразличимый поток. То же самое мы всегда должны помнить и в применении к интегралу. Интеграл также содержит в себе стихию алогического становления, и в нем также отдельные моменты этого процесса слиты в один внутренне безразличный поток. Правда, значимость этого потока здесь иная, но самый процесс, его алогичность тут одни и те же. Какой бы раздельной величиной ни являлась данная величина, все равно, раз она интеграл, она мыслится перекрытой стихией алогического становления и видится и сквозит через данную стихию как ее предельный контур.

Далее, необходимо заметить, что предыдущее определение интеграла есть, в сущности, определение того, что обычно называется «определенным» интегралом. Если мы просто напишем, как это понимается всегда,

???(x)dx=?(x)

то тут утверждается: ?(x) есть производная функции ?(x) и ?(x)dx есть ее дифференциал; интеграл же от этой функции и есть сама первообразная функция y=f(x). В этом способе выражения на первом плане стоит понимание интегрирования как действия, обратного дифференцированию. Однако если мы выдвинем на первый план момент предельного суммирования, то ясно, что это суммирование предполагает определенные пределы, в которых совершается данное суммирование. Тут имеется в виду процесс, который в общем можно обозначить так:

???(x)dx=?(b)-?(a)

Тут имеются два соседних значения функции f(a) и f(b), между которыми и происходит процесс суммирования бесконечно–малых приращений. Этот процесс можно изобразить при помощи суммирования бесконечного количества таких разниц:

??(b1)-??(a);??(b1)-??(b2); ??(b3)-?? (b2)и т. д.

Но ясно и так, что этот процесс разыгрывается между значениями а и b, в пределах между а и b, и что только в этом случае процесс суммирования получает законченную форму. Такой интеграл, который является результатом суммирования в определенных пределах, называется определенным интегралом в отличие от интеграла, не содержащего этих пределов и носящего название неопределенного интеграла. Ясно после этих разъяснений, что, хотя в обычных руководствах по анализу изложение начинается с неопределенных интегралов, логически, а также исторически первенство остается за понятием определенного интеграла. И только игнорирование интеграла как результата суммирования и выдвижение на первый план интеграла как результата взаимообразного действия с дифференцированием приводит к тому, что целесообразным считается начинать именно с неопределенных интегралов.

В заключение этого параграфа полезно подвести диалектический итог учению о приращениях и связанных с этим понятий дифференциала и интеграла.

Во–первых, после предыдущего рассуждения должна быть ясна такая тройственная последовательность. Если мы возьмем функцию саму по себе, у =??(x), т. е. функцию в ее непосредственном бытии, то антитезой к ней будет, очевидно, переход ее в инобытие, в становление. Инобытийное становление для функции, как и вообще для всего, есть система бесконечно–малых приращений. И следовательно, если функция в себе есть тезис, то диалектическим антитезисом, отрицанием ее будет функция вне себя, функция в области нарастающего становления. Но тогда синтезом функции в себе и функции вне себя будет, очевидно, функция как интеграл, потому что в функции как интеграле дана, во–первых, она сама и, во–вторых, дано перекрытие ее суммой всех ее бесконечно–малых наращений. Функция—тезис, ее наращение, дифференциал — антитезис, интеграл—синтез.

Далее, можно диалектически расчленить и среднюю область из только что указанных, область дифференциала. Тут мы имеем 1) приращение аргумента Ах, 2) приращение функции ?у и 3) предел их взаимоотношения=y' производную, или -1) дифференциал аргумента, 2) дифференциал функции и 3) производную.

Таким образом, получается следующая резюмирующая диалектическая схема.

Вы читаете Хаос и структура
Добавить отзыв
ВСЕ ОТЗЫВЫ О КНИГЕ В ИЗБРАННОЕ

0

Вы можете отметить интересные вам фрагменты текста, которые будут доступны по уникальной ссылке в адресной строке браузера.

Отметить Добавить цитату