щепетильное, болезненно–субъективистическое и субтильно–логическое. Такой дух живет исканием и стремлением. Его интересует самый процесс искания и стремления. И вот почему эта идея так упорна в новоевропейской философии. Ее можно рассмотреть там, где с первого взгляда о ней нет и помину и где как будто бы совершенно иная и методика, и терминология. Об этом, однако, должен идти разговор в специальном историко–философском труде.

Оторвавши смысл от бытия, освободивши идею от субстанциональности, превративши густое и тяжелое бытие в легко подвижную, утонченную и изощренную мысль, западноевропейский функционализм создал себе целое царство мысли, какого–то фантастического разума, где утонченность, субтильность, капризная сложность математического исчисления соперничают с размахом, лихорадочными темпами и энтузиазмом великих исканий и постижений. Западноевропейская математика, освободивши себя от всякой грузной жизненной интуиции и даже сбросивши с себя оказавшийся слишком тяжелым груз человеческих интуиций, эта математика удалилась в царство невообразимых абстракций, головокружительных операций над фантастическими вымыслами, в изобретение и создание таких конструкций, которые не представимы никакой интуицией и не охватываемы никаким наглядным образом. Мало того, что был изгнан всякий геометризм из арифметики и алгебры—в противоположность античной традиции, мало того, что самая геометрия стала пониматься арифметически и алгебраически, так что Декарту пришлось создавать в первой половине XVII в[ека] т. н. аналитическую геометрию. Мало всего этого. Эта самая геометрия настолько превратилась в абстрактную игру абстрактных понятий, настолько оторвалась от всякой жизненной интуиции, что стала возможной геометрия любого числа измерений; и всякая такая геометрия выводится чисто абстрактно, не зависимо ни от каких интуиций и наглядных представлений. Функционализм, оторвавши числовое представление от бытия, сделал возможным и бесконечные полеты, самозабвенный экстаз разумных и рассудочных построений математики, и он же облегчил это никогда не угасавшее на Западе стремление к тончайшей инкрустации мысли, к капризнейшей отточенности числовых конструкций, к поражающей субтильности всего математического исследования[226].

Античность и Средние века по сравнению с этим—наивны, статичны, целомудренно–устойчивы, связаны своими глубочайшими корнями с бытием, которое они мыслят как абсолютное. И тут не может быть такого фантастического разгула мысли. Тут больше деловитости, трезвости, уравновешенной расчетливости и серьезности.

Итак, функционализм вырастает на той же почве субъективизма, что и понятие бесконечно–малого. Обе эти категории появились в результате отрыва от абсолютных и объективных установок; оба они питаются субъективистическим рвением в необозримую и таинственную даль, стремясь, одно — отбросить субстанцию и тяжелую материальную фактичность действительности, а другое—в достигнутой таким образом чисто смысловой сфере погрузиться в неустанную погоню за вечно уплывающей из рук умственной бесконечностью.

Естественным должен быть вопрос: не объединятся ли как–нибудь эти две фундаментальные категории—функция и бесконечно–малое? Неужели их не объединил тот общий дух, который их породил? И неужели он не объединил их с целью усилить действие каждой из них? Вполне естественно ожидать, что эти две функциональные категории сплотятся вместе и создадут зрелище, небывалое по силе, своеобразию и красоте.

Да, это именно и произошло в XVII веке, когда появилось дифференциальное и интегральное исчисление, основанное как раз на анализе функций бесконечно–малых приращений независимого переменного. Математический анализ и есть это объединение учения о функциях с учением о бесконечно–малом. И тут перед нами начнут вырисовываться уже конкретные контуры этой замечательной науки.

Чтобы закрепить достигнутое нами понятие функции (на пороге исследования самого математического анализа) в виде обычной диалектической тройственности принципов, скажем так.

Переменное, взятое безотносительно и самостоятельно, переменное в себе есть независимое переменное. В математике его называют аргументом и обозначают через х.

Переменное, взятое как противоположность независимому переменному, есть зависимое переменное и обозначается через у. Этот у указывает на то, что есть какая–то зависимость между ним и х.

Но это ведь есть не только какая–то зависимость или зависимость вообще, но и конкретная форма зависимости. Иначе и быть не может. Поскольку независимое переменное есть нечто определенное, постольку, входя в объединение с зависимостью от него другого, переменного и осуществляясь в качестве именно аргумента, оно должно и абстрактную зависимость превратить· в такую же определенную и конкретную зависимость. Это–то и есть функция в собственном смысле слова и обозначается в математическом анализе так:

y=?(x)

Чтобы перейти теперь к исследованию форм объединения понятий функции и бесконечно–малого, вспомним, чтобы не сбиться, еще раз диалектическую последовательность наших мыслей. Сначала мы обследовали величину как таковую. Сюда вошло учение как о непосредственно–значащих величинах — арифметических, — так и учение об опосредствовании этих величин в форме непрерывности, прерывности и предела. Это обобщение учения о величине завершилось синтезом числа как непосредственного и как опосредствованного бытия—в форме учения о бесконечно–малом. Теперь все рассуждение о понятии функции заставило нас совсем покинуть область величин и непосредственных, и опосредствованных, и синтетических и перейти в противоположную область—отношений между величинами (а не самих величин), в область функциональных отношений.

Естественно возникает потребность объединить эти две области— величин (чисел) и функций. Тут– то и возникают понятия производной, дифференциала и интеграла.

7. Производная. Итак, отныне мы находимся всецело в области функций. Кроме того, эти функции мы пополняем содержанием, основанным на понятии бесконечно–малого. Следовательно, имеется независимое переменное, погруженное[227] в стихию бесконечно– малого становления, и имеется зависимое от него переменное, тоже, очевидно, как–то связанное с процессом бесконечно малого становления. И возникает вопрос: что же делается с этим зависимым переменным, с функцией, и какую форму принимает это отношение аргумента к функции. Когда берется функция y=?(x) то ясно, в каком отношении находятся ? и Пусть имеется у=х2+1: ясно, что нужно сделать с jc, чтобы получить у. Но вот ? ушел в становление, погрузился в бесконечный процесс стремления, ушел в бесконечную даль, и—спрашивается: что же сделается с зависимым от него у, в каком положении очутится этот становящийся ? к становящемуся у? С самого начала ясно, что это будет совершенно иным отношением, чем то отношение, в котором находились между собой хну, когда они покоились на месте, были просто арифметическими и алгебраическими величинами и не погружались в стихию алогического становления. Рассмотрим теперь, что же это за отношение и что тут нового по сравнению со статическим значением величин.

Итак, изменяется аргумент, изменяется в зависимости от него и функция. Употребляя традиционные обозначения математического анализа, мы получим следующее. Если x —аргумент, ?х будет приращением аргумента x. В зависимости от этого функция у тоже будет нарастать; обозначим приращение функции через ?у. Чтобы узнать, какой вид примет наращение функции, возьмем приращенную функцию ?(x+?x) и вычтем из нее первоначальную функцию y=?(x). Получаем: ?(x+?x) — ?(x). Это есть то наращение, которое происходит в функции, когда получается наращение аргумента ?х Следовательно, если

y=?(x)

ТО

?y=?(x+?x) — ?(x)

и, беря отношение обеих частей этого равенства к ??, мы получаем

Это и есть математческое выражение того нового отношения, в которое вступают ? и у, когда они берутся не сами по себе, не статически, но когда они погружаются в процесс становления, т. е. начинают нарастать или убывать. Это рассуждение (и обозначение) обычно еще не вполне достаточно, и требуется его существенно дополнить в одном пункте.

Вы читаете Хаос и структура
Добавить отзыв
ВСЕ ОТЗЫВЫ О КНИГЕ В ИЗБРАННОЕ

0

Вы можете отметить интересные вам фрагменты текста, которые будут доступны по уникальной ссылке в адресной строке браузера.

Отметить Добавить цитату