Поэтому как бы «просты» ни были сами по себе эти операции дифференцирования и интегрирования (с ними знакомится уже студент–первокурсник), это нисколько не мешает их логической сложности. Можно даже выставить такое общее наблюдение: чем проще и яснее жизненное явление, тем труднее бывает его логически описать. Чего проще красный, синий, зеленый цвет! Но дать логическое их понятие очень трудно.

Однако нужно, конечно, согласиться с тем, что очень плоха та логика, которая только и остается в пределах сложных конструкций и не ведет к познанию жизненной простоты соответствующего явления. Наша логика и исходит из этой простоты, и кончает ею, оставляя за собой право пользоваться разными сложными конструкциями на пути от этой первой и наивной простоты к простоте последней и мудрой. Мы исходим из того, что мышление есть отражение материи, и на этом строим всю логику. Теперь, после разнообразных логических построений, мы опять приходим к действительности, но приходим обогащенные, уже вооруженные точными понятиями одной из точнейших человеческих наук. Мы приходим к жизненно– логическому значению основных категорий математического анализа.

13. ТРИ АСПЕКТА ТЕОРИИ БЕСКОНЕЧНО–МАЛЫХ В ПРИМЕНЕНИИ К ЛОГИКЕ

Если бросить общий взгляд на пройденный нами путь, то с точки зрения главнейших направлений в логике может быть справедливо указано, что у нас кое–что остается весьма слабо расчлененным, и прежде всего что у нас в отчетливой форме не проведено различение логики объемной, логики содержания и логики структурной. Несомненно, в нашей характеристике метода бесконечно–малых для логики мы использовали все эти три исторические системы логики. Однако до сих пор у нас не было повода производить в тщательной форме это различение и мы нерасч–лененно пользовались всеми тремя типами логики. Сейчас не мешает дать это в более точном и критическом освещении.

1. Несомненно, во всех наших рассуждениях о методе бесконечно–малых в логике мы стояли преимущественно на объемной точке зрения. Объясняется это тем, что к такой точке зрения математика особенно склонна; и это для нее вполне естественно ввиду количественной природы самой этой науки. Когда математики говорят о пределе и о стремлении к нему, то, конечно, они имеют в виду исключительно величины. К пределу приближается не что иное, как именно переменная величина. Наращение функции и аргумента мыслится здесь также в виде наращения величины. Это и заставило нас говорить прежде всего о родах и видах, когда мы захотели связать инфинитезимальные категории с логическими. Понятие у нас, вступая в становление, дробится, делится, и, конечно, делится прежде всего объемно. Производная есть принцип деления понятия, и деления прежде всего объемного: в результате возникают именно видовые различия и виды. Интегрирование ведет нас к общности, но опять–таки главным образом к родовой общности. Почти везде мы так и говорим: интеграл—родовая общность, производный принцип деления рода на виды, дифференциал — видовое различие.

Эта объемная интерпретация метода бесконечно–малых сама собой напрашивается при сравнении математического анализа с логикой; и, повторяем, она есть самый простой и самый естественный результат этого сравнения, поскольку математика есть не что иное, как именно чисто количественная дисциплина. Невозможно спорить против права объемной логики на существование; и то, что мы ею воспользовались при переводе инфинитезимальных категорий на язык логики, это само по себе не только не должно вызывать никаких сомнений, но во всех отношениях может только приветствоваться.

2. Однако, отдавши всяческую дань объемной логике, мы ни в каком случае не можем считать этот объемный аспект единственным и исключительным. В истории нашей науки было еще одно сильное направление — это т. н. логика содержания, правда, несравненно менее популярная, чем логика объемная, но, собственно говоря, менее популярная только по недоразумению, ибо ее логические ресурсы нисколько не менее значительны, а во многом даже заслуживают предпочтения. Применение метода бесконечно– малых в логике в целях построения логики содержания поэтому заслуживает всяческого внимания, и мы его кое–где проводили в предыдущем рассуждении, хотя и несравненно меньше, чем того оно заслуживало бы.

Под логикой содержания, конкретно говоря, надо подразумевать логику не объемов понятия, а признаков понятия. Если подойти к понятию с точки зрения его признаков и ограничить операции над ним операциями с его признаками, то получается ряд интересных построений, вступающих в резкий антагонизм с построениями объемными. Так, напр., суждение с точки зрения логики содержания приходится принимать не в виде включения подлежащего в объем сказуемого, но в виде включения сказуемого в содержание подлежащего. «Снег бел» — это значит не то, что «снег» включается в число белых предметов, но то, что признак белизны включается в число признаков «снега». С точки зрения объемной логики нельзя делать того заключения по четвертой фигуре силлогизма, которое было бы наиболее естественным: «Алмаз— углерод, углерод горюч; следовательно, алмаз горюч», в то время как с точки зрения логики содержания этот силлогизм вполне правилен, поскольку здесь мы находим только последовательную цепь признаков, вносимых в первоначальное понятие «алмаз». И т. д. и т. д. Словом, везде тут идет речь о возникновении и соединении признаков, об образовании ими понятия и о взаимоотношении понятий, рассматриваемых только лишь как совокупность признаков.

Допускает ли такая признаковая интерпретация понятия применение метода бесконечно–малых? Обязательно допускает, и даже требует. И мы его провели выше в одном из самых центральных мест нашего исследования. Сейчас только надо это тщательно отграничить от объемной интерпретации и не давать здесь такого нерасчлененного изложения, которое получалось у нас выше (ввиду преждевременности этого различения для предыдущего этапа нашего исследования).

Что такое интеграл с этой новой точки зрения «логики содержания»? Ясно, это уже не родовое понятие как предел обобщения видов, но понятие как предел суммы его признаков. Признаки понятия с этой точки зрения должны мыслиться наподобие тех «элементарных прямоугольников», из которых математики конструируют площадь криволинейной трапеции: признаки эти должны постепенно сужаться, а число их должно постепенно расти; и, когда каждый из них станет бесконечно малым, а общее число их станет бесконечно большим, тогда, суммируя их, мы и переходим к пределу, который есть искомый нами интеграл, т. е. понятие как предел суммы признаков, как предельная совокупность признаков.

Чем окажется при такой точке зрения производная? Как и в объемной логике, она здесь есть только принцип становления понятия, или принцип его развертывания; если угодно, это есть принцип, или основание, его деления. Однако речь тут пойдет уже не об объемном делении, т. е. не о таком, откуда мы получили бы виды данного понятия. Развертывание здесь должно мыслиться содержательно; это есть основание деления, или становления, по содержанию, становления признакового. Мы ведь уже встречались с тем фактом, что одно и то же понятие может иметь разные системы существенных признаков в зависимости от той или иной (объективно обоснованной) точки зрения. Но даже если бы данное понятие обладало и единственной системой существенных признаков, все равно эта последняя определялась бы своим вполне определенным признаком. Пусть вода определяется как Н20. Это значит, что в основу ее определения положен принцип химического соединения. Пусть она определяется с точки зрения температуры своего кипения и замерзания. Это есть определение с физической точки зрения. И т. д. Ясно, следовательно, что всегда существует тот или иной принцип развертывания понятия по его содержанию, основание подбора и разделения его признаков. Очевидно, если в объемной логике основание деления понятия мы соединяли с производной математического анализа, то для «логики содержания» производной понятия является тоже принцип развертывания этого понятия, но развертывания содержательного. Это принцип подбора и разделения признаков данного понятия.

Но тогда должно стать ясным и что такое дифференциал понятия в «логике содержания». Если в объемной логике это есть видовое различие, то здесь, очевидно, это есть каждый отдельный признак понятия. Как там все виды подчиняются одному принципу деления понятия, так здесь все признаки понятия подчиняются своему единому принципу. И если принцип этот есть предел, а то, что ему подчинено, непрерывно и бесконечно стремится к этому пределу, то признаки тут тоже есть нечто текучее, сплошно стремящееся, так что один признак, несомненно, переходит в другой; и надо его закрепить в этой его бесконечно малой текучести, чтобы о нем можно было говорить как о чем–то определенном. Это и есть

Вы читаете Хаос и структура
Добавить отзыв
ВСЕ ОТЗЫВЫ О КНИГЕ В ИЗБРАННОЕ

0

Вы можете отметить интересные вам фрагменты текста, которые будут доступны по уникальной ссылке в адресной строке браузера.

Отметить Добавить цитату