14. ЖИЗНЕННО–ЛОГИЧЕСКОЕ ЗНАЧЕНИЕ МАТЕМАТИЧЕСКОГО АНАЛИЗА

Именно во всех этих рассуждениях мы не должны забывать, что инфинитезимальные понятия не только просто имеют некое отношение к действительности, но что вековое развитие наук о природе доказало их совершенно неотъемлемую связь с нею. Мы их рассматривали в применении к логике, т. е. к науке о мышлении. Но бесконечно–малое есть неотъемлемое достояние реальной действительности еще и до всякого мышления и без всякого мышления. Надо иметь в виду, что и без построения логики как науки мы в нашем самом обыкновенном чувственном опыте постоянно интегрируем и дифференцируем и не можем не интегрировать, не можем не дифференцировать.

1. В самом деле, меняются ли вещи или нет, движутся или нет? Можно ли остановить непрерывное становление вещей или нельзя этого сделать? Казалось бы, на это может быть только один и совершенно недвусмысленный ответ. Но стоит только допустить, что вещи непрерывно меняются, как тотчас же возникает вопрос: а как же мы узнаем эту вещь, если она вся целиком и непрерывно меняется. Как она может оставаться тою же вещью, если мы только что признали, что она сплошь становится и меняется? Ясно, что все ее изменения мы относим к какому–то ее ядру или центру, а не просто их забываем. Мы их, несомненно, суммируем. И как же происходит это суммирование? Вовсе не так, что все слагаемые остаются твердыми и неподвижными. Эти слагаемые расплываются в целом вещи, ибо вещь мы имеем все же как такую, как единичную, из каких бы слагаемых ни складывалось ее движение. С другой стороны, могут ли все эти бесконечно–малые изменения вещи быть таковыми в ней раз навсегда и сливаться в неразличимую массу? Это тоже невозможно, так как вещи реально меняются, и мы отчетливо воспринимаем это изменение. Так что же такое в конце концов реальное восприятие реально движущейся вещи, когда ни становление не дробится на дискретные части, ни дискретные части не теряют своей значимости в том целом, что называется восприятием вещи?

Я не знаю, как тут обойтись без процесса интегрирования и дифференцирования. Возводя изменения вещи к ее целому и прослеживая, как от них нарастает это целое, мы не делаем ничего другого, как просто–напросто интегрируем вещь и интегрируем наше восприятие вещи. Ведь надо же когда–нибудь гносеологу и логику всерьез обратить внимание на то, что такое, напр., длина дуги с точки зрения интегральною исчисления. Длиной дуги кривой линии называется здесь предел периметра вписанной в нее ломаной, когда число звеньев этой последней бесконечно возрастает, а сами звенья бесконечно умаляются. Все наши отдельные, изолированные восприятия частей этой длины есть не что иное, как эти вот звенья ломаной, то большие, то маленькие. Как из них составить восприятие целой длины данной дуги? Только путем перехода к пределу через суммирование отдельных отрезков в условиях их бесконечного дробления. Но раз так, то что же это может значить иное, как [не] то, что восприятие длины всякой дуги есть интегрирование. А ведь мы же на каждом шагу в обыденной жизни судим о длине тех или иных кривых в тех или иных границах. Далее, разве можно в логике проходить мимо того, как интегральное исчисление понимает площади и объемы тел? О площади мы уже говорили. Но было бы так же просто рассказать и об объеме тела, как о некоторого рода интеграле. Разве это не значит, что воспринять объем тела можно только путем бессознательного интегрирования его элементов? С другой стороны, кто же не наблюдал скорость движения тела и не сравнивал проходимый им путь с этой скоростью? Кто не сравнивал скоростей двух или нескольких тел, движущихся одновременно? Чем мы занимаемся, идя по людной улице, как не тем, что все время оцениваем движение трамвая, автомашин, велосипедов, лошадей, пешеходов? А известно ли всем, кто занимается логикой, что скорость есть первая производная от пути по времени?

Мы всегда наблюдаем ускорение и замедление движения. А известно ли логикам, что ускорение есть вторая производная от пути по времени? Что же остается сказать после этого? Не то ли, что восприятие всякой скорости и ускорения есть бессознательное дифференцирование разных расстояний с точки зрения временного протекания тех или иных движений?

2. Вы «измерили» глазами какой–нибудь предмет—этот стол, этот стул, этот шкаф и т. д., — и даже не измерили, а просто взглянули на него. Что это значит? Это значит, что вы пробежали по нему глазами. Но что значит пробежать? Ваш пробег состоит из отдельных изолированных точек или не состоит? Пробежать не значит перечислить какие–то изолированные точки. Пробежать глазами и тем более просто взглянуть на предмет—это значит иметь обязательно непрерывное восприятие. Но что значит непрерывное восприятие? Это значит не что иное, как суммирование бесконечно–малых приращений. Ни в каком случае нельзя обойтись без этого. Или—прерывность, или—суммирование бесконечно–малых. Но допустим, что это есть суммирование бесконечно–малых восприятий, и больше ничего. Есть ли это восприятие нашего предмета? Ни в каком случае. Ведь мы же взглянули на шкаф, а не на что–то другое. Значит, мы не просто суммируем, но суммируем до каких–то пределов, суммируем по какому–то закону, суммируем в определенных направлениях. Итак, без суммирования бесконечно–малых ощущений нет непрерывности в восприятии нашего предмета, т. е. в этом случае он распадается на множество дискретных вещей, не имеющих одна к другой никакого отношения, а без предела нет данной и определенной вещи, а есть безграничное и бессмысленное накопление бесконечно–малых ощущений, т. е. тоже потеря предмета. В одном случае теряется его непрерывность, а в другом случае утрачивается его осмысленность как именно данного предмета. Но ведь предел суммы бесконечно–малых есть именно интеграл и достижение такого интеграла есть интегрирование. А это значит, что даже измерить данную вещь глазами, т. е. просто взглянуть на нее, — это уже значит интегрировать ее в точном математическом смысле слова.

В течение дня мы сплошь имеем дело с измерением или по крайней мере оценкой длин, площадей, поверхностей и объемов. Я сел за стол—это значит уже употребил какие–то оценки высоты стула и стола и сравнил обе эти высоты. Я взял в руки перо—это значит оценил объем пера и то расстояние, на котором оно до этого времени находилось от меня. Я встал, надел пальто и шапку, вышел на улицу и стал идти по улице—это значит, что я все время оцениваю длины тех кривых, по которым я иду, объемы тех тел, которые я нахожу на вешалке и на себя надеваю, те величины и размеры, которые я встречаю на улице (ширину тротуара, рост встречных людей, размеры витрин или дверей магазинов) и т. д. и т. д. Что такое все это? Все это есть сплошное интегрирование бесчисленного ряда[216] функций, сплошное интегрирование своих ощущений.

Вы встречаете знакомого и говорите ему: «Как вы постарели!» или «Как вы помолодели!» Что это значит? Это значит прежде всего, что вы сравнили его теперешний вид с тем, что он был, напр., три года назад. За эти три года ваш знакомый постарел. Но ведь он жил, конечно, вполне непрерывно в течение этих трех лет? Совершенно верно. И вы теперь констатируете известный результат? Совершенно верно. Однако в таком случае вы, конечно, просто–напросто проинтегрировали известную функцию (т. е. вашего знакомого) в точно определенных пределах (а именно в пределах тех трех лет, в течение которых вы его не видели). Вы получили т. н. определенный интеграл.

Однако вовсе нет необходимости для подтверждения нашего ежесекундного интегрирования ссылаться на физические длины, площади, объемы или временные промежутки. Закроем глаза, заткнем уши, забудем все обоняния и осязания и погрузимся в сосредоточенное размышление, — и мы тут никуда не уйдем от ежемгновенного интегрирования. Пусть мы что–нибудь мыслим, ну, хотя бы т. н. Смутное время на Руси в начале XVII в., Наполеона, Солнечную систему, римский сенат, план новой гидростанции. Что бы мы ни мыслили, мы всегда мыслим нечто. И как бы мы это ни мыслили, мы в нем нечто различаем и это различаемое соединяем в целое. Всякое такое нечто как едино–раздельное целое не может не быть непрерывностью —уже по одному тому, что оно есть нечто и это «нечто» разлито по всем его отдельным элементам. Но что же такое целое, определенное целое, возникшее из непрерывного суммирования своих частей? Оно опять есть интеграл. Без интегрирования никуда не деться, если только брать существующее в непрерывном становлении. Только ценою устранения непрерывного становления из вещей можно обойтись без интегрирования. Но вещи, которые не становятся непрерывно, не есть реальные вещи. Это фикция, фантом, жалкая абстракция или пылкая фантазия, но не действительность.

3. С другой стороны, всякое нахождение частностей на фоне общего при условии непрерывного их возникновения, а также при условии знания способа или метода (если не закона) такого возникновения возможно только как дифференцирование. Найти производную—это и значит овладеть способом проявления вовне некоей функции в зависимости от ее непрерывного изменения. Если вы наблюдаете

Вы читаете Хаос и структура
Добавить отзыв
ВСЕ ОТЗЫВЫ О КНИГЕ В ИЗБРАННОЕ

0

Вы можете отметить интересные вам фрагменты текста, которые будут доступны по уникальной ссылке в адресной строке браузера.

Отметить Добавить цитату