невероятным упорством и настойчивостью в работе. Для старика Тихомирова ЭРД – самоцель, для Глушко – средство достижения цели. А цель – космический полет. Расчеты показывают, да и в опытах он видит это. – электрический ракетный двигатель имеет тягу ограниченную, вывести в космос пилотируемый корабль он не сможет. ЭРД – вторичен, потому что это двигатель невесомости, но ведь в невесомость надо сначала попасть. Когда тебе 21 год, и ты сам придумал нечто такое, что до тебя никто не додумался сделать, и «нечто» это принято и одобрено учеными авторитетами, и тебе дали средства, людей, помещение, оборудование, с тем чтобы ты свою придумку усовершенствовал, очень нелегко сказать себе: «Нет, мой ЭРД – не главное сейчас. Пожалуй, я начал с конца. Космической технике нужно другое». Это было нелегко сказать, но Валентин сказал себе это. «Мне стало ясно, – вспоминает академик Глушко. – что при всей перспективности электрореактивный двигатель понадобится нам лишь на следующем этапе освоения космоса, а чтобы проникнуть в космос, необходимы жидкостные реактивные двигатели, о которых так много писал Константин Эдуардович Циолковский. С начала 1930 года основное внимание я сосредоточил на разработке именно этих моторов…»

Все тогда было для него в новинку и научить некому. Циолковский о ЖРД писал, но ни расчетов тепловых процессов, ни чертежей, ни тем более конструкций у него нет. Цандер убежденный сторонник ЖРД, и подход у него к ним инженерный, конкретный. Но он слишком увлечен своей идеей дожигания в двигателях металла конструкций, а проблема эта по конструкторскому своему оформлению невероятно трудная, и упорство Цандера невольно тормозит всю работу. Очень быстро, в первые год-два работы, Валентин понимает, что проблема ЖРД – это не какая-то одна неведомая крепость техники, которую можно взять приступом, лобовой атакой. Скорее это целая оборонительная линия. Общая проблема разбивается на ряд отдельных проблем, решая которые последовательно можно в конце концов построить жидкостный ракетный мотор, как тогда называли ЖРД.

Начать хотя бы с системы подачи. Чем выше давление в камере сгорания, тем выше скорость истечения, тем эффективнее ракетный двигатель. Но давление окислителя и горючего перед входом в камеру сгорания должно быть еще выше, иначе его не удастся туда впрыснуть, – это ясно. Как создать давление подачи? Сначала это делали аккумуляторы давления. Ставили баллон со сжатым газом, открывали кран, газ выходил и выдавливал жидкость из бака в камеру сгорания. Вместо баллона можно поставить пороховую шашку: топливо будут выдавливать газы, которые образуются при горении пороха. Разумеется, все дело в том, насколько один параметр влияет на другой, но в принципе образуется заколдованный круг: чем совершеннее и мощнее двигатель, тем выше давление подачи, тем прочнее, а значит, тяжелее должны быть баки, чтобы его выдержать, тем тяжелее вся ракета. Но чем тяжелее ракета, тем более совершенный и мощный нужен ей двигатель. До какого-то предела аккумуляторы способны решить проблему, а дальше нужны насосы. Топливо под маленьким давлением, а следовательно, из облегченных баков будет поступать в насосы, которые и создадут высокое давление подачи. И прочным надо будет сделать только трубопроводы от насоса к камере сгорания – это куда проще. Значит, проблема в том, чтобы определить границы применения той или иной системы подачи. «Изыскание наилучших способов введения в камеру сгорания реактивного мотора компонентов топлива, горючего и окислителя, является одним из основных вопросов, решение которых стоит в непосредственной связи с возможностью использования в технике движущихся реактивных аппаратов», – писал Глушко в 1931 году.

Наши первые жидкостные реактивные двигатели.

Это только одна из многих проблем. Каким геометрически должен быть двигатель? Чем длиннее сопло, тем мощнее двигатель. Но опять-таки, прирост мощности за счет длины имеет предел: чем длиннее сопло, тем оно тяжелее. Прирост мощности при очень длинном сопле не компенсирует утяжеления конструкции. Выигрыш можно получить, если отыскать наивыгоднейшую геометрическую форму. «Оказывается целесообразным применять на практике криволинейные сопла найденных очертаний», – это из технического отчета Глушко 1931 года.

Но, пожалуй, самый крепкий орешек в загадках ЖРД – это проблема охлаждения двигателя. Чем выше температура в камере сгорания, тем, опять-таки, эффективнее и мощнее работает ЖРД. Но высокой температуры не выдерживают металлы конструкции. Оберт и другие конструкторы разбавляли горючее, снижали его теплотворную способность, «портили», но ведь это не выход. Вместо металла делали в наиболее напряженных по температуре частях камеры сгорания вставки из тугоплавкого графита и карборунда. Но и они не выдерживали температуры выше 1600 градусов, а хотелось довести ее до 2-3 тысяч, а то и выше. Карбиды сгорали, поглощая кислород окислителя. Глушко отказался от них уже в 1930 году. Он понимает, что «по температуре горения и теплонапряженности камеры сгорания ракетные двигатели не имеют себе равных», но он еще надеется на тугоплавкие окиси циркония – они плавятся при температуре 2950 градусов – и окись магния, температура плавления которого чуть ниже. Инженерная интуиция в конце концов подсказывает: никакие материалы не выдержат. Надо идти совсем другой дорогой. Надо прибегнуть, как он пишет, к динамическому охлаждению двигателя: отводить от него тепло, как отводит вода тепло автомобильного мотора. Но вода здесь не годится. «Выгодно охлаждать ракетный мотор самим жидким топливом не только с целью уменьшения теплопотерь [32], но и чтобы не увеличивать мертвый вес ракетного летательного аппарата посторонней жидкостью», – писал он в 1931 году. Тогда он еще не представляет всей сложности стоящей перед ним задачи, не знает, что всю жизнь предстоит бороться ему с этими чудовищными потоками тепла, что возникнет в этой борьбе целая отрасль в науке о тепло-передачах – теория охлаждения жидкостных ракетных двигателей и что, судя по всему, конца этой борьбе, несмотря на все техническое могущество нашего космического века, видно никогда не будет.

Глушко конструирует двигатели, испытывает их, прожигает, взрывает, иногда заходит в тупик, быстро понимает это, возвращается и идет дальше, шаг за шагом идет к совершенству. Он верит, что оно достижимо; в технических отчетах, где всякий намек на эмоции издавна почитался чуть ли не признаком дурного тона, он называет ЖРД – «двигателями передовой техники». Второй сектор ГДЛ, которым руководит Валентин Петрович, создает целую серию ОРМ – опытных ракетных моторов. Первый – совсем примитивный, с цилиндрическим соплом, с водяным охлаждением, с тягой всего в 20 килограммов. Но следующий – уже в чем-то получше. Уже в ОРМ-3 и ОРМ-5 двигатель охлаждался одним из компонентов топлива. Происходил классический процесс диалектики: переход количества в качество. Газодинамическая лаборатория становится ведущей организацией в стране по исследованиям в области ЖРД. Тихомиров уже стар, болен, он почти не выходит из своей квартиры на Невском проспекте. Туда возят ему на подпись бумаги, там собирает он иногда совещания. Управлять лабораторией трудно ему еще и потому, что хозяйство расширилось, разветвилась тематика. Над ракетными снарядами работали на Ржевском полигоне под Ленинградом. Порох готовили в Гребном порту на Васильевском острове. Стартовые ускорители отрабатывали на Комендантском аэродроме. Двенадцать комнат получили в знаменитом здании Главного Адмиралтейства с золотым шпилем. И, наконец, Глушко со своими ЖРД занимал Иоанновский равелин Петропавловской крепости.

Новый гарнизон старой крепости рос довольно быстро. Почти одновременно с Глушко в ГДЛ приходят выпускники – артиллерийские офицеры, кадровые командиры Красной Армии Георгий Эрихович Лангемак и Борис Сергеевич Петропавловский.

23 марта 1930 года умер Тихомиров. Через три дня в письме к жене Петропавловский писал: «Получил вчера из Москвы телеграмму о назначении меня начальником лаборатории. Это меня и устраивает и не устраивает. Удобно то, что я теперь без всяких помех могу осуществлять свои идеи, но с другой – это связано с выполнением массы административно-хозяйственных функций, которые я не особенно долюбливаю».

Иоанновский равелин Петропавловской крепости.

Добавить отзыв
ВСЕ ОТЗЫВЫ О КНИГЕ В ИЗБРАННОЕ

0

Вы можете отметить интересные вам фрагменты текста, которые будут доступны по уникальной ссылке в адресной строке браузера.

Отметить Добавить цитату