Распределения, исследуемые Гиббсом, сами допускают динамическую интерпретацию. Если мы рассматриваем консервативную динамическую систему весьма общего вида с N степенями свободы, то координаты положений и скоростей такой системы можно привести к особой системе 2N координат, из которых N называются обобщенными координатами положения и N — обобщенными импульсами. Эти координаты определяют 2N-мерное пространство [126] и в нем 2N-мерный объем. Возьмем произвольную область этого пространства и заставим точки перемещаться с течением времени. Каждый набор 2N координат перейдет тогда в новый набор, зависящий от истекшего времени, но непрерывное изменение границ области не изменит ее 2N-мерного объема. В общем случае для множеств, не столь простых, понятие объема порождает систему меры лебегова типа. В этой системе меры и в консервативных динамических системах, преобразуемых так, что мера сохраняется постоянной, сохраняет постоянство и другая скалярная величина — энергия. Если все тела системы действуют только друг на друга и в системе нет сил, связанных с фиксированным положениями и фиксированными направлениями в пространстве, то остаются постоянными еще два выражения, оба векторные: количество движения и момент количества движения системы в целом. Их нетрудно исключить и тем самым заменить данную систему системой с меньшим числом степеней свободы.

В сугубо частных системах могут быть и другие величины, не определяемые энергией, количеством движения и моментом количества движения, также не меняющиеся с эволюцией системы. Известно, однако, что системы с другими инвариантными величинами, зависящими от начальных координат и импульсов динамической системы и достаточно регулярными, чтобы [c.103] допускать интегрирование на основе меры Лебега, в действительности очень редки, в некотором вполне точном смысле[127]. В системах, не имеющих других инвариантных величин, можно фиксировать координаты, соответствующие энергии, количеству движения и общему моменту количества движения, и тогда в пространстве остальных координат мера, определяемая координатами положений и импульсов, определит сама некоторую подмеру, подобно тому, как мера в трехмерном пространстве определит площадь на двумерной поверхности для заданного семейства двумерных поверхностей. Например, пусть мы имеем семейство концентрических сфер; объем между двумя сближаемыми концентрическими сферами (если его нормировать, приняв за единицу полный объем области между двумя сферами) в пределе даст меру площади на поверхности сферы.

Применим теперь эту новую меру к одной из областей фазового пространства, для которой определена энергия, общее количество движения и общий момент количества движения, и предположим, что в системе нет других измеримых инвариантных величин. Пусть полная мера этой ограниченной области постоянна; изменяя масштаб, ее можно приравнять единице. Поскольку наша мера была получена из меры, инвариантной во времени, способом, инвариантным во времени, она и сама инвариантна. Мы назовем эту меру фазовой мерой, а средние по этой мере — фазовыми средними.

Но всякая величина, изменяющаяся во времени, может иметь также среднее значение по времени — временно?е среднее. Например, если f (t) зависит от t, то временно?е среднее для прошлого равно

 ,          (2.01)

а временно?е среднее для будущего

           (2.02)

[c.104]

В гиббсовой статистической механике встречаются как временные, так и пространственные средние. Блестящей идеей Гиббса была попытка доказать, что эти средние в некотором смысле тождественны. Догадка Гиббса о связи двух типов средних совершенно правильна, но метод, которым он пытался доказать эту связь, был совершенно и безнадежно неверным. В этом его вряд ли можно винить. Интеграл Лебега стал известен в Америке лишь к моменту смерти Гиббса. В течение еще пятнадцати лет он был музейной редкостью и применялся только, чтобы продемонстрировать молодым математикам, до какой степени могут быть доведены требования математической строгости. Такой выдающийся математик, как У.Ф. Осгуд, не хотел его признать до конца своей жизни[128]. Лишь около 1930 г. группа математиков — Купмен, фон Нейман, Биркгофф[129] — установила наконец прочные основы статистической механики Гиббса. Каковы были эти основы, мы увидим дальше, когда познакомимся с эргодической теорией.

Сам Гиббс думал, что в системе, из которой удалены все инварианты — лишние координаты, почти все пути точек в фазовом пространстве проходят через все координаты такого пространства. Эту гипотезу он назвал эргодической, от греческих слов ????? — «работа» и ???? — «путь». Но как показал Планшерель и другие, ни в одном реальном случае эта гипотеза не оправдывается. Никакая дифференцируемая траектория, даже бесконечной длины, не может покрыть целиком область на плоскости. Последователи Гиббса и, по-видимому, в конце концов сам Гиббс смутно поняли это и заменили свою гипотезу другой, квазиэргодической гипотезой, которая утверждает лишь, что с течением времени система в общем случае проходит неограниченно близко к каждой точке в области фазового пространства определенной известными интервалами. Логически такая гипотеза вполне приемлема, но она совершенно недостаточна для тех выводов, которые Гиббс основывает на ней. Она ничего не говорит об относительном времени пребывания системы в окрестности каждой точки. [c.105]

Помимо понятии среднего и меры (иначе говоря, среднего по всему пространству от функции, равной 1 на измеряемом множестве и 0 вне его), необходимых в первую очередь для разбора идей Гиббса, мы нуждаемся при оценке действительного значения эргодической теории в более точном анализе понятия инварианта, как и понятия группы преобразований. Эти понятия, несомненно, были известны Гиббсу, как показывают его работы по векторному анализу. Тем не менее можно утверждать, что он не оценил в полной мере их философского значения. Подобно своему современнику Хевисайду, Гиббс принадлежал к типу ученых, у которых физико-математическая проницательность часто опережает их логику и которые обыкновенно бывают правы, но часто не в состоянии объяснить, почему и как.

Для существования любой науки необходимо, чтобы существовали явления, которые не оставались бы изолированными. Если бы мир управлялся серией чудес, совершаемых иррациональным богом с его внезапными прихотями, то мы были бы вынуждены ждать каждой новой катастрофы в состоянии пассивного недоумения. Подобную картину мира встречаем мы в крокетной игре, описанной в «Алисе в стране чудес»[130]. В этой игре молотки — фламинго, шары — ежи, которые спокойно разворачиваются и идут по своим делам, ворота — карточные солдаты, точно так же способные совершать движения по собственной инициативе, а правила игры определяются декретами вспыльчивой королевы червей[131], поведение которой невозможно предугадать.

Существо эффективного правила игры или полезного закона физики состоит в том, что правило можно установить заранее и применять во многих случаях. В идеале закон должен описывать свойство рассматриваемой системы, остающееся всегда тем же самым в потоке частных событий. В простейшем случае берется свойство, инвариантное относительно множества преобразований, которым подвергается система. Так мы приходим к [c.106] понятиям преобразования, группы преобразований и инварианта.

Преобразование системы есть изменение, при котором каждый элемент переходит в другой элемент. Изменение Солнечной системы в промежуток между моментами времени t1 и t2 есть преобразование координат планет. Аналогичное изменение их координат при перемещении нами начала координат или повороте наших геометрических осей также есть преобразование. Изменение масштаба, происходящее, когда мы наблюдаем препарат в микроскоп, — еще один пример преобразования.

Добавить отзыв
ВСЕ ОТЗЫВЫ О КНИГЕ В ИЗБРАННОЕ

0

Вы можете отметить интересные вам фрагменты текста, которые будут доступны по уникальной ссылке в адресной строке браузера.

Отметить Добавить цитату